Open Access Peer-reviewed Research Article

Smartwatch Selection Recommendation System Using the K-Nearest Neighbor (KNN) Algorithm with Dynamic Dataset Optimization

Main Article Content

Gino Erman Agusta corresponding author
Fatchul Arifin

Abstract

This research aimed to develop a smartwatch recommendation system using the K-Nearest Neighbor (KNN) algorithm with dynamic dataset optimization. By employing a dynamic dataset, the accuracy of KNN calculations was enhanced. The dataset, stored in CSV format, was filtered based on user preferences when searching for a smartwatch, generating a dynamic dataset tailored to individual needs. The research involved 35 respondents to evaluate the precision and feasibility of the application. Results showed that 25.7% of respondents found the application highly relevant to their preferences, 31.4% relevant, and 31.4% somewhat relevant. User satisfaction levels indicated that 34.3% were very satisfied, 34.3% satisfied, and 20% somewhat satisfied, highlighting the application’s effectiveness in meeting user expectations.

Keywords
dynamic dataset, K-Nearest Neighbor, recommendation system, smartwatch

Article Details

How to Cite
Agusta, G. E., & Arifin, F. (2025). Smartwatch Selection Recommendation System Using the K-Nearest Neighbor (KNN) Algorithm with Dynamic Dataset Optimization. Advances in Mobile Learning Educational Research, 5(1), 1388-1399. https://doi.org/10.25082/AMLER.2025.01.013

References

  1. Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M., & Tang, N. (2016). Detecting data errors. Proceedings of the VLDB Endowment, 9(12), 993–1004. https://doi.org/10.14778/2994509.2994518
  2. Abu Alfeilat, H. A., Hassanat, A. B. A., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Eyal Salman, H. S., & Prasath, V. B. S. (2019). Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data, 7(4), 221–248. https://doi.org/10.1089/big.2018.0175
  3. Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics, 12(1), 90–108. https://doi.org/10.1016/j.aci.2014.10.001
  4. Chandel, R. S., Sharma, S., Kaur, S., Singh, S., & Kumar, R. (2022). Smart watches: A review of evolution in bio-medical sector. Materials Today: Proceedings, 50, 1053–1066. https://doi.org/10.1016/j.matpr.2021.07.460
  5. Dhanabal, S., & Chandramathi, S. (2011). A review of various k-nearest neighbor query processing techniques. International Journal of Computer Applications, 31(7), 14–22. https://doi.org/10.5120/3836-5332
  6. Ebrahimi, A. (2024). Dynamic User Preferences Optimization in Time-Aware Recommendation Systems. Integration. https://trepo.tuni.fi/handle/10024/160841
  7. Fahmi, S. (2023). Pengaruh Promosi, Harga dan Daya Tarik Produk terhadap Minat Konsumen untuk Beralih menggunakan Sepeda Listrik. JAMIN: Jurnal Aplikasi Manajemen Dan Inovasi Bisnis, 6 (1), 92. https://doi.org/10.47201/jamin.v6i1.199
  8. Ganti, V., & Sarma, A. D. (2013). Data Cleaning. In Synthesis Lectures on Data Management. Springer International Publishing. https://doi.org/10.1007/978-3-031-01897-8
  9. Halder, R. K., Uddin, M. N., Uddin, Md. A., Aryal, S., & Khraisat, A. (2024). Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00973-y
  10. Ibrahim, M., Bajwa, I. S., Sarwar, N., Hajjej, F., & Sakr, H. A. (2023). An Intelligent Hybrid Neural Collaborative Filtering Approach for True Recommendations. IEEE Access, 11, 64831–64849. https://doi.org/10.1109/access.2023.3289751
  11. Johnson, J. (2021). Designing with the Mind in Mind. Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, 1–2. https://doi.org/10.1145/3411763.3444997
  12. King, C. E., & Sarrafzadeh, M. (2017). A Survey of Smartwatches in Remote Health Monitoring. Journal of Healthcare Informatics Research, 2(1–2), 1–24. https://doi.org/10.1007/s41666-017-0012-7
  13. Kishor Bharadwaj, K. S., Jambunath, Y. S., Patil, K. D., Ramnath Babu, T. J., & Santosh Bhargav, D. B. (2024). Preprocessing and Integration of Reproductive Health Data. Data-Driven Reproductive Health, 31–59. https://doi.org/10.1007/978-981-97-7451-7_3
  14. Konstan, J. A., & Riedl, J. (2012). Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction, 22(1–2), 101–123. https://doi.org/10.1007/s11257-011-9112-x
  15. Laaziri, M., Benmoussa, K., Khoulji, S., Larbi, K. M., & El Yamami, A. (2019). Analyzing bootsrap and foundation font-end frameworks: a comparative study. International Journal of Electrical and Computer Engineering (IJECE), 9(1), 713-722. https://doi.org/10.11591/ijece.v9i1.pp713-722
  16. Liu, X., Gao, B., Suleiman, B., You, H., Ma, Z., Liu, Y., & Anaissi, A. (2023). Privacy-Preserving Personalized Fitness Recommender System P3 FitRec: A Multi-level Deep Learning Approach. ACM Transactions on Knowledge Discovery from Data, 17(6), 1–24. https://doi.org/10.1145/3572899
  17. Maillo, J., Ramírez, S., Triguero, I., & Herrera, F. (2017). kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data. Knowledge-Based Systems, 117, 3–15. https://doi.org/10.1016/j.knosys.2016.06.012
  18. Mertz, D. (2021). Cleaning data for effective data science: Doing the other 80% of the work with Python, R, and command-line tools. Packt Publishing Ltd.
  19. Murphy-Hill, E., & Murphy, G. C. (2013). Recommendation Delivery. Recommendation Systems in Software Engineering, 223–242. https://doi.org/10.1007/978-3-642-45135-5_9
  20. Nurwanto, F., Ardiyanto, I., & Wibirama, S. (2016). Light sport exercise detection based on smartwatch and smartphone using k-Nearest Neighbor and Dynamic Time Warping algorithm. 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), 1–5. https://doi.org/10.1109/iciteed.2016.7863299
  21. Debora Oktaviani, Fikra Terisha A, Mashita Ayuni, Tesalonika Sembiring, Wynne Lie, & Eryc Yeo. (2024). Analisis Dampak Kecerdasan Buatan dalam Peningkatan Efisiensi Pemasaran Digital di Industri E-commerce Indonesia. JURNAL MANAJEMEN DAN BISNIS EKONOMI, 2(4), 01–10. https://doi.org/10.54066/jmbe-itb.v2i4.2385
  22. Patro, S. G. K., Mishra, B. K., Panda, S. K., Kumar, R., Long, H. V., Taniar, D., & Priyadarshini, I. (2020). A Hybrid Action-Related K-Nearest Neighbour (HAR-KNN) Approach for Recommendation Systems. IEEE Access, 8, 90978–90991. https://doi.org/10.1109/access.2020.2994056
  23. Ramezani, R., Cao, M., Earthperson, A., & Naeim, A. (2023). Developing a Smartwatch-Based Healthcare Application: Notes to Consider. Sensors, 23(15), 6652. https://doi.org/10.3390/s23156652
  24. Ray, R. K., & Singh, A. (2025). From online reviews to smartwatch recommendation: An integrated aspect-based sentiment analysis framework. Journal of Retailing and Consumer Services, 82, 104059. https://doi.org/10.1016/j.jretconser.2024.104059
  25. Reeder, B., & David, A. (2016). Health at hand: A systematic review of smart watch uses for health and wellness. Journal of Biomedical Informatics, 63, 269–276. https://doi.org/10.1016/j.jbi.2016.09.001
  26. Sharma, A., & Amritanshu. (2024). Enhancing Recommendation Systems: A Comparative and Optimization Study of KNN-Based Algorithms. 2024 3rd International Conference for Advancement in Technology (ICONAT), 1–7. https://doi.org/10.1109/iconat61936.2024.10774863
  27. Song, Y., Liang, J., Lu, J., & Zhao, X. (2017). An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing, 251, 26–34. https://doi.org/10.1016/j.neucom.2017.04.018
  28. Sulistyo, H. A., Kusumasari, T. F., & Alam, E. N. (2020). Implementation of Data Cleansing Null Method for Data Quality Management Dashboard using Pentaho Data Integration. 2020 3rd International Conference on Information and Communications Technology (ICOIACT), 12–16. https://doi.org/10.1109/icoiact50329.2020.9332030
  29. Syriopoulos, P. K., Kotsiantis, S. B., & Vrahatis, M. N. (2022). Survey on KNN Methods in Data Science. Learning and Intelligent Optimization, 379–393. https://doi.org/10.1007/978-3-031-24866-5_28
  30. Triguero, I., García‐Gil, D., Maillo, J., Luengo, J., García, S., & Herrera, F. (2018). Transforming big data into smart data: An insight on the use of the k‐nearest neighbors algorithm to obtain quality data. WIREs Data Mining and Knowledge Discovery, 9(2). Portico. https://doi.org/10.1002/widm.1289
  31. Usmani, A. A. (2023). Guidelines for Selection of Web Designing Tool & Framework for Web Front-End Application (Doctoral dissertation, Master’s Thesis, Tampere University).
  32. Design and implementation of artificial intelligence fusion experimental platform based on machine learning algorithm. (2023). International Journal of New Developments in Engineering and Society, 7(2). https://doi.org/10.25236/ijndes.2023.070202
  33. Wu, L.-H., Wu, L.-C., & Chang, S.-C. (2016). Exploring consumers’ intention to accept smartwatch. Computers in Human Behavior, 64, 383–392. https://doi.org/10.1016/j.chb.2016.07.005
  34. Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for kNN Classification. ACM Transactions on Intelligent Systems and Technology, 8(3), 1–19. https://doi.org/10.1145/2990508
  35. Zikry, A., Muhammad Bitrayoga, Siska Yulia Defitri, Akhmad Dahlan, & Nina Dwi Putriani. (2024). Analisis Penggunaan AI dalam Keberhasilan Customer Experience Pengguna Aplikasi E-Commerce Shopee. Indo-Fintech Intellectuals: Journal of Economics and Business, 4(3), 766–781. https://doi.org/10.54373/ifijeb.v4i3.1387