Smartwatch Selection Recommendation System Using the K-Nearest Neighbor (KNN) Algorithm with Dynamic Dataset Optimization
Main Article Content
Abstract
This research aimed to develop a smartwatch recommendation system using the K-Nearest Neighbor (KNN) algorithm with dynamic dataset optimization. By employing a dynamic dataset, the accuracy of KNN calculations was enhanced. The dataset, stored in CSV format, was filtered based on user preferences when searching for a smartwatch, generating a dynamic dataset tailored to individual needs. The research involved 35 respondents to evaluate the precision and feasibility of the application. Results showed that 25.7% of respondents found the application highly relevant to their preferences, 31.4% relevant, and 31.4% somewhat relevant. User satisfaction levels indicated that 34.3% were very satisfied, 34.3% satisfied, and 20% somewhat satisfied, highlighting the application’s effectiveness in meeting user expectations.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M., & Tang, N. (2016). Detecting data errors. Proceedings of the VLDB Endowment, 9(12), 993–1004. https://doi.org/10.14778/2994509.2994518
- Abu Alfeilat, H. A., Hassanat, A. B. A., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Eyal Salman, H. S., & Prasath, V. B. S. (2019). Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data, 7(4), 221–248. https://doi.org/10.1089/big.2018.0175
- Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics, 12(1), 90–108. https://doi.org/10.1016/j.aci.2014.10.001
- Chandel, R. S., Sharma, S., Kaur, S., Singh, S., & Kumar, R. (2022). Smart watches: A review of evolution in bio-medical sector. Materials Today: Proceedings, 50, 1053–1066. https://doi.org/10.1016/j.matpr.2021.07.460
- Dhanabal, S., & Chandramathi, S. (2011). A review of various k-nearest neighbor query processing techniques. International Journal of Computer Applications, 31(7), 14–22. https://doi.org/10.5120/3836-5332
- Ebrahimi, A. (2024). Dynamic User Preferences Optimization in Time-Aware Recommendation Systems. Integration. https://trepo.tuni.fi/handle/10024/160841
- Fahmi, S. (2023). Pengaruh Promosi, Harga dan Daya Tarik Produk terhadap Minat Konsumen untuk Beralih menggunakan Sepeda Listrik. JAMIN: Jurnal Aplikasi Manajemen Dan Inovasi Bisnis, 6 (1), 92. https://doi.org/10.47201/jamin.v6i1.199
- Ganti, V., & Sarma, A. D. (2013). Data Cleaning. In Synthesis Lectures on Data Management. Springer International Publishing. https://doi.org/10.1007/978-3-031-01897-8
- Halder, R. K., Uddin, M. N., Uddin, Md. A., Aryal, S., & Khraisat, A. (2024). Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00973-y
- Ibrahim, M., Bajwa, I. S., Sarwar, N., Hajjej, F., & Sakr, H. A. (2023). An Intelligent Hybrid Neural Collaborative Filtering Approach for True Recommendations. IEEE Access, 11, 64831–64849. https://doi.org/10.1109/access.2023.3289751
- Johnson, J. (2021). Designing with the Mind in Mind. Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, 1–2. https://doi.org/10.1145/3411763.3444997
- King, C. E., & Sarrafzadeh, M. (2017). A Survey of Smartwatches in Remote Health Monitoring. Journal of Healthcare Informatics Research, 2(1–2), 1–24. https://doi.org/10.1007/s41666-017-0012-7
- Kishor Bharadwaj, K. S., Jambunath, Y. S., Patil, K. D., Ramnath Babu, T. J., & Santosh Bhargav, D. B. (2024). Preprocessing and Integration of Reproductive Health Data. Data-Driven Reproductive Health, 31–59. https://doi.org/10.1007/978-981-97-7451-7_3
- Konstan, J. A., & Riedl, J. (2012). Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction, 22(1–2), 101–123. https://doi.org/10.1007/s11257-011-9112-x
- Laaziri, M., Benmoussa, K., Khoulji, S., Larbi, K. M., & El Yamami, A. (2019). Analyzing bootsrap and foundation font-end frameworks: a comparative study. International Journal of Electrical and Computer Engineering (IJECE), 9(1), 713-722. https://doi.org/10.11591/ijece.v9i1.pp713-722
- Liu, X., Gao, B., Suleiman, B., You, H., Ma, Z., Liu, Y., & Anaissi, A. (2023). Privacy-Preserving Personalized Fitness Recommender System P3 FitRec: A Multi-level Deep Learning Approach. ACM Transactions on Knowledge Discovery from Data, 17(6), 1–24. https://doi.org/10.1145/3572899
- Maillo, J., Ramírez, S., Triguero, I., & Herrera, F. (2017). kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data. Knowledge-Based Systems, 117, 3–15. https://doi.org/10.1016/j.knosys.2016.06.012
- Mertz, D. (2021). Cleaning data for effective data science: Doing the other 80% of the work with Python, R, and command-line tools. Packt Publishing Ltd.
- Murphy-Hill, E., & Murphy, G. C. (2013). Recommendation Delivery. Recommendation Systems in Software Engineering, 223–242. https://doi.org/10.1007/978-3-642-45135-5_9
- Nurwanto, F., Ardiyanto, I., & Wibirama, S. (2016). Light sport exercise detection based on smartwatch and smartphone using k-Nearest Neighbor and Dynamic Time Warping algorithm. 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), 1–5. https://doi.org/10.1109/iciteed.2016.7863299
- Debora Oktaviani, Fikra Terisha A, Mashita Ayuni, Tesalonika Sembiring, Wynne Lie, & Eryc Yeo. (2024). Analisis Dampak Kecerdasan Buatan dalam Peningkatan Efisiensi Pemasaran Digital di Industri E-commerce Indonesia. JURNAL MANAJEMEN DAN BISNIS EKONOMI, 2(4), 01–10. https://doi.org/10.54066/jmbe-itb.v2i4.2385
- Patro, S. G. K., Mishra, B. K., Panda, S. K., Kumar, R., Long, H. V., Taniar, D., & Priyadarshini, I. (2020). A Hybrid Action-Related K-Nearest Neighbour (HAR-KNN) Approach for Recommendation Systems. IEEE Access, 8, 90978–90991. https://doi.org/10.1109/access.2020.2994056
- Ramezani, R., Cao, M., Earthperson, A., & Naeim, A. (2023). Developing a Smartwatch-Based Healthcare Application: Notes to Consider. Sensors, 23(15), 6652. https://doi.org/10.3390/s23156652
- Ray, R. K., & Singh, A. (2025). From online reviews to smartwatch recommendation: An integrated aspect-based sentiment analysis framework. Journal of Retailing and Consumer Services, 82, 104059. https://doi.org/10.1016/j.jretconser.2024.104059
- Reeder, B., & David, A. (2016). Health at hand: A systematic review of smart watch uses for health and wellness. Journal of Biomedical Informatics, 63, 269–276. https://doi.org/10.1016/j.jbi.2016.09.001
- Sharma, A., & Amritanshu. (2024). Enhancing Recommendation Systems: A Comparative and Optimization Study of KNN-Based Algorithms. 2024 3rd International Conference for Advancement in Technology (ICONAT), 1–7. https://doi.org/10.1109/iconat61936.2024.10774863
- Song, Y., Liang, J., Lu, J., & Zhao, X. (2017). An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing, 251, 26–34. https://doi.org/10.1016/j.neucom.2017.04.018
- Sulistyo, H. A., Kusumasari, T. F., & Alam, E. N. (2020). Implementation of Data Cleansing Null Method for Data Quality Management Dashboard using Pentaho Data Integration. 2020 3rd International Conference on Information and Communications Technology (ICOIACT), 12–16. https://doi.org/10.1109/icoiact50329.2020.9332030
- Syriopoulos, P. K., Kotsiantis, S. B., & Vrahatis, M. N. (2022). Survey on KNN Methods in Data Science. Learning and Intelligent Optimization, 379–393. https://doi.org/10.1007/978-3-031-24866-5_28
- Triguero, I., García‐Gil, D., Maillo, J., Luengo, J., García, S., & Herrera, F. (2018). Transforming big data into smart data: An insight on the use of the k‐nearest neighbors algorithm to obtain quality data. WIREs Data Mining and Knowledge Discovery, 9(2). Portico. https://doi.org/10.1002/widm.1289
- Usmani, A. A. (2023). Guidelines for Selection of Web Designing Tool & Framework for Web Front-End Application (Doctoral dissertation, Master’s Thesis, Tampere University).
- Design and implementation of artificial intelligence fusion experimental platform based on machine learning algorithm. (2023). International Journal of New Developments in Engineering and Society, 7(2). https://doi.org/10.25236/ijndes.2023.070202
- Wu, L.-H., Wu, L.-C., & Chang, S.-C. (2016). Exploring consumers’ intention to accept smartwatch. Computers in Human Behavior, 64, 383–392. https://doi.org/10.1016/j.chb.2016.07.005
- Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for kNN Classification. ACM Transactions on Intelligent Systems and Technology, 8(3), 1–19. https://doi.org/10.1145/2990508
- Zikry, A., Muhammad Bitrayoga, Siska Yulia Defitri, Akhmad Dahlan, & Nina Dwi Putriani. (2024). Analisis Penggunaan AI dalam Keberhasilan Customer Experience Pengguna Aplikasi E-Commerce Shopee. Indo-Fintech Intellectuals: Journal of Economics and Business, 4(3), 766–781. https://doi.org/10.54373/ifijeb.v4i3.1387