Open Access Peer-reviewed Editorial

Cancer, Mankind’s Challenge

Main Article Content

Ying-Yu Cui corresponding author

Article Details

How to Cite
Cui, Y.-Y. (2019). Cancer, Mankind’s Challenge. Current Cancer Reports, 1(1), 1-5. https://doi.org/10.25082/CCR.2019.01.001

References

  1. Hanahan D and Weinberg RA. The hallmarks of cancer. Cell, 2000, 100(1): 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  2. Fouad YA and Aanei C. Revisiting the hallmarks of cancer. American Journal of Cancer Research, 2017, 7(5): 1016-1036. PMID: 28560055. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446472
  3. Mortality GBD and Causes of Death C. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 385(9963): 117-171. https://doi.org/10.1016/S0140-6736(14)61682-2
  4. Solomon DA, Kim T, Diaz-Martinez LA, et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science, 2011, 333(6045): 1039-1043. https://doi.org/10.1126/science.1203619
  5. Simonetti G, Bruno S, Padella A, et al. Aneuploidy: Cancer strength or vulnerability? International Journal of Cancer, 2019, 144(1): 8-25. https://doi.org/10.1002/ijc.31718
  6. Sekhri K. Telomeres and telomerase: understanding basic structure and potential new therapeutic strategies targeting it in the treatment of cancer. Journal of Postgraduate Medicine, 2014, 60(3): 303-308. https://doi.org/10.4103/0022-3859.138797
  7. Flavahan WA, Gaskell E and Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science, 2017, 357(6348) : eaal2380. https://doi.org/10.1126/science.aal2380
  8. Severson TM, Kim T, Joosten SEP, et al. Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nature Communications, 2018, 9: 482. https://doi.org/10.1038/s41467-018-02856-2
  9. McClanahan F, Hanna B, Miller S, et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood, 2015, 126(2): 203-211. https://doi.org/10.1182/blood-2015-01-622936
  10. Seimiya T, Otsuka M, Iwata T, et al. Inflammation and dedifferentiation in pancreatic carcinogenesis. World Journal of Clinical Cases, 2018, 6(15): 882-891. https://doi.org/10.12998/wjcc.v6.i15.882
  11. Cui YY. RIG-I: A double-edged sword between inflammation and cancer. Integrative Cancer Science and Therapeutics, 2017, 4(2): 1-3. https://doi.org/10.15761/ICST.100023812
  12. Kruk J and Aboul-Enein HY. Reactive Oxygen and Nitrogen Species in Carcinogenesis: Implications of Oxidative Stress on the Progression and Development of Several Cancer Types. Mini Reviews in Medicinal Chemistry, 2017, 17(11): 904-919. https://doi.org/10.2174/1389557517666170228115324
  13. Solomon DA, Kim JS, Bondaruk J, et al. Frequent truncating mutations of STAG2 in bladder cancer. Nature Genetics, 2013, 45(12): 1428-1430. https://doi.org/10.1038/ng.2800
  14. Sondka Z, Bamford S, Cole CG, et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nature Reviews Cancer, 2018, 18(11): 696-705. https://doi.org/10.1038/s41568-018-0060-1
  15. Seyedolmohadessin SM, Akbari MT, Nourmohammadi Z, et al. Detection of Loss of Heterozygosity (LOH) Using Circulating Cell-free DNA (cfDNA) by Fluorescencebased Multiplex PCR for Identification of Patients With Prostate Cancer. Applied Immunohistochemistry & Molecular Morphology : AIMM, 2018, 26(10): 749-759. https://doi.org/10.1097/PAI.0000000000000514
  16. Wendt C and Margolin S. Identifying breast cancer susceptibility genes - a review of the genetic background in familial breast cancer. Acta Oncologica, 2019, DOI:10.1080/0284186X.2018.1529428. https://doi.org/10.1080/0284186X.2018.1529428
  17. Jara L, Morales S, de Mayo T, et al. Mutations in BRCA1, BRCA2 and other breast and ovarian cancer susceptibility genes in Central and South American populations. Biological Research, 2017, 50(1): 35-52. https://doi.org/10.1186/s40659-017-0139-2
  18. El Marabti E and Younis I. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Frontiers in Molecular Biosciences, 2018, 5: 80-90. https://doi.org/10.3389/fmolb.2018.00080
  19. Peitzsch C, Tyutyunnykova A, Pantel K, et al. Cancer stem cells: The root of tumor recurrence and metastases. Seminars in Cancer Biology, 2017, 44: 10-24. https://doi.org/10.1016/j.semcancer.2017.02.011
  20. Aguilar-Gallardo C and Simon C. Cells, stem cells, and cancer stem cells. Seminars in Reproductive Medicine, 2013, 31(01): 5-13. https://doi.org/10.1055/s-0032-1331792
  21. Moghbeli M, Moghbeli F, Forghanifard MM, et al. Cancer stem cell detection and isolation. Medical Oncology, 2014, 31(9): 69-75. https://doi.org/10.1007/s12032-014-0069-622
  22. Chen Z, Shi T, Zhang L, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Letters, 2016, 370(1): 153-164. https://doi.org/10.1016/j.canlet.2015.10.010
  23. Lin BW, Gong CC, Song HF, et al. Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology, 2017, 174(11): 1226-1243. https://doi.org/10.1111/bph.13627
  24. Song HF, Lin BW, Gong CC, et al. The Research Progress on Proteases Involved in Cell Migration. Progress in Biochemistry and Biophysics, 2017, 44(2): 99-109. https://dx.doi.org/10.16476/j.pibb.2016.0329
  25. Wu DC, Li S, Yang DQ, et al. Effects of Pinus massoniana bark extract on the adhesion and migration capabilities of HeLa cells. Fitoterapia, 2011, 82(8): 1202-1205. https://doi.org/10.1016/j.fitote.2011.08.008
  26. Mao P, Zhang E, Chen Y, et al. Pinus massoniana bark extract inhibits migration of the lung cancer A549 cell line. Oncology Letter, 2017, 13(2): 1019-1023. https://doi.org/10.3892/ol.2016.5509
  27. Liu J, Jiang GQ, Li XL, et al. Anti-Tumor Effect of Pinus massoniana Bark Proanthocyanidins on Ovarian Cancer through Induction of Cell Apoptosis and Inhibition of Cell Migration. PLoS One, 2015, 10(11): e0142157. https://doi.org/10.1371/journal.pone.0142157
  28. Feng J, Zhang XL, Li YY, et al. Pinus massoniana Bark Extract: Structure-Activity Relationship and Biomedical Potentials. The American Journal of Chinese Medicine, 2016, 44(8): 1559-1577. https://doi.org/10.1142/S0192415X16500877
  29. Nencioni A, Caffa I, Cortellino S, et al. Fasting and cancer: molecular mechanisms and clinical application. Nature Reviews Cancer, 2018, 18: 707-719. https://doi.org/10.1038/s41568-018-0061-0
  30. Schwartz L, Supuran CT and Alfarouk KO. The Warburg Effect and the Hallmarks of Cancer. Anti-cancer Agents in Medicinal Chemistry, 2017, 17(2): 164-170. https://doi.org/10.2174/1871520616666161031143301
  31. D’Aloia MM, Zizzari IG, Sacchetti B, et al. CAR-T cells: the long and winding road to solid tumors. Cell Death & Disease, 2018, 9(3): 282-293. https://doi.org/10.1038/s41419-018-0278-6
  32. Block KI, Gyllenhaal C, Lowe L, et al. Designing a broadspectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35 Suppl: S276-S304. https://doi.org/10.1016/j.semcancer.2015.09.007
  33. Pawlik A, Machaj F, Rosik J, et al. CTLA4 antagonists in phase I and phase II clinical trials, current status and future perspectives for cancer therapy. Expert Opinion on Investigational Drugs, 2018, DOI: 10.1080/13543784.2019.1559297. https://doi.org/10.1080/13543784.2019.1559297
  34. Hokland P, Hokland M, and Cotter F. The Nobel Prize for Medicine awarded for cancer therapy by inhibition of negative immune regulation. British Journal of Haematology, 2018, 183(5): 698-700. https://doi.org/10.1111/bjh.15694
  35. Scheper W, Kelderman S, Fanchi LF, et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nature Medicine, 2018, DOI: 10.1038/s41591-018-0266-5. https://doi.org/10.1038/s41591-018-0266-5
  36. Nagarsheth N, Wicha MS and Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 2017, 17(9): 559-572. https://doi.org/10.1038/nri.2017.49
  37. Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501(7467): 338-345. https://doi.org/10.1038/nature12625
  38. Nakamura T, Fukuoka K, Nakano Y, et al. Genome-wide DNA methylation profiling shows molecular heterogeneity of anaplastic pleomorphic xanthoastrocytoma. Cancer Science, 2019, DOI: 10.1111/cas.13903. https://doi.org/10.1111/cas.13903
  39. Sievers CK, Grady WM, Halberg RB, et al. New insights into the earliest stages of colorectal tumorigenesis. Expert Review of Gastroenterology & Hepatology, 2017, 11(8): 723-729. https://doi.org/10.1080/17474124.2017.1330150
  40. Testa U, Pelosi E and Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Medical Sciences, 2018, 6(2): 31. https://doi.org/10.3390/medsci6020031
  41. Deng X and Nakamura Y. Cancer Precision Medicine: From Cancer Screening to Drug Selection and Personalized Immunotherapy. Trends in Pharmacological Sciences, 2017, 38(1): 15-24. https://doi.org/10.1016/j.tips.2016.10.013
  42. Jackson HW, Defamie V, Waterhouse P, et al. TIMPs: versatile extracellular regulators in cancer. Nature Reviews Cancer, 2017, 17(1): 38-53. https://doi.org/10.1038/nrc.2016.115
  43. Mittal V, El Rayes T, Narula N, et al. The Microenvironment of Lung Cancer and Therapeutic Implications. Advances in Experimental Medicine and Biology, 2016, 890: 75-110. https://doi.org/10.1007/978-3-319-24932-25
  44. Wang X, Jin J, Wan F, et al. AMPK Promotes SPOPMediated NANOG Degradation to Regulate Prostate Cancer Cell Stemness. Developmental Cell, 2018, pii: S1534-5807(18)31016-5. https://doi.org/10.1016/j.devcel.2018.11.033
  45. Kreuzaler P and Watson CJ. Killing a cancer: what are the alternatives? Nature Reviews Cancer, 2012, 12(6): 411-424. https://doi.org/10.1038/nrc3264
  46. Chen X and Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nature Reviews Drug Discovery, 2018, DOI: 10.1038/s41573-018-0004-1. https://doi.org/10.1038/s41573-018-0004-1
  47. Ediriweera MK, Tennekoon KH and Samarakoon SR. In vitro assays and techniques utilized in anticancer drug discovery. Journal of Applied Toxicology, 2019, 39(1): 38-71. https://doi.org/10.1002/jat.3658
  48. Moses C, Garcia-Bloj B, Harvey AR, et al. Hallmarks of cancer: The CRISPR generation. European Journal of Cancer, 2018, 93: 10-18. https://doi.org/10.1016/j.ejca.2018.01.002
  49. Cui YY. Establishment and Validation of Human Colon Cancer HCT116 wip1 FLAG Knock-in Cell Line. Annals of Mutagenesis, 2017, 1(1): 3-6. http://austinpublishinggroup.com/mutagenesis/currentissue.php
  50. Sepantafar M, Maheronnaghsh R, Mohammadi H, et al. Engineered Hydrogels in Cancer Therapy and Diagnosis. Trends in Biotechnology, 2017, 35(11): 1074-1087. https://doi.org/10.1016/j.tibtech.2017.06.015