Open Access Peer-reviewed Review

Recent progress on electrochemical production of hydrogen peroxide

Main Article Content

Aniqa Sehrish
Romana Manzoor
Kai Dong
Yuanyuan Jiang
Yizhong Lu corresponding author

Abstract

Hydrogen peroxide (H2O2), first synthesized in 1818 through the acidification of barium peroxide (BaO2) with nitric acid, is a clear and colorless liquid which is entirely miscible with water and variety of organic solvents such as carboxylic esters. Anthraquinone process (an old production process of H2O2), a batch process carried out in large facilities is an energy demanding process that requires large facilities, and involves oxidation of anthraquinone molecules and sequential hydrogenation. Moreover, the direct synthesis method enables production in a continuous mode as well as it permits small scale, decentralized production. Many drawbacks associated with these processes such as, energetic inefficiency and inherent disadvantages have motivated researchers, industry and academia to find out alternative for synthesis of H2O2. Electrochemical route based on catalyst selectively reduce oxygen to hydrogen peroxide. O2 is cathodically reduced to produce H2O2 via 2-electron pathway or 4-electron pathway to get H2O. Electrolysis of water has an important place in storage and electrochemical energy conversion process where problem is to choose a sufficiently stable and active electrode for anodic oxygen evolution reaction. Most commonly used catalysts on the cathode are carbon based materials such as carbon black, carbon nanotubes, graphite, carbon sponge, and carbon fiber. In perspective of expanding demand of production and usage of hydrogen peroxide we review the past literature to summarize different production processes of H2O2. In this review paper, we mainly focus on electrochemical production of hydrogen peroxide along with other alternatives such as, anthraquinone method for industrial H2O2 production and direct synthesis process. We also review the catalytic activity, selectivity and stability for enhanced yield of H2O2. From revision of experimental and theoretical data from the past literature; we argue that successful implementation of electrochemical H2O2 production can be realized on the basis of stable, active and selective catalyst.

Keywords
hydrogen peroxide, direct synthesis, electrochemical synthesis, oxygen reduction reaction, catalytic selectivity and activity

Article Details

Supporting Agencies
This work was supported by the National Natural Science Foundation of China (21705056), the Young Taishan Scholars Program (tsqn201812080), the Natural Science Foundation of Shandong Province (ZR2019YQ10, ZR2017MB022, ZR2018BB057, ZR2018PB009) and the Open Funds of the State Key Laboratory of Electro-analytical Chemistry (SKLEAC201901).
How to Cite
Sehrish, A., Manzoor, R., Dong, K., Jiang, Y., & Lu, Y. (2019). Recent progress on electrochemical production of hydrogen peroxide. Chemical Reports, 1(2), 81-101. https://doi.org/10.25082/CR.2019.02.005

References

  1. Th´enard LJ. Observations sur des nouvelles combinaisons entre l’oxigne et divers acides. Ann Chim Phys, 1818, 8: 306-312.
  2. Thenard L. Nouvelles observations sur les acides et les oxides oxigenes. Annales de chimie et de physique, 1818.
  3. Meidinger H. Ueber voltametrische Messungen. Justus Liebigs Annalen der Chemie, 1853, 88(1): 57-81. https://doi.org/10.1002/jlac.18530880103
  4. ManchotW. Ueber Sauerstoffactivirung. Justus Liebigs Annalen der Chemie, 1901, 314(1-2): 177-199. https://doi.org/10.1002/jlac.19013140117
  5. Walton JH and Filson GW. The direct preparation of hydrogen peroxide in a high concentration. Journal of the American Chemical Society, 1932, 54(8): 3228-3229. https://doi.org/10.1021/ja01347a026
  6. Riedl H and Pfleiderer G. US Patent, 2,158,525 (1939). Google Scholar.
  7. Goor G, Glenneberg J and Jacobi S. Hydrogen peroxide. Ullmann’s Encyclopedia of Industrial Chemistry, 2000. https://doi.org/10.1002/14356007.a13_443
  8. Teles JH, Hermans I, Franz G, et al. Oxidation, Ullmann’s Encyclopedia of Industrial Chemistry, 2000: 1-103. https://doi.org/10.1002/14356007.a18_261.pub2
  9. Bajpai P. Pulp and Paper Industry: Microbiological Issues in Papermaking, 2015. https://doi.org/10.1016/B978-0-12-803408-8.00002-0
  10. Ciriminna R, Albanese L, Meneguzzo F, et al. Hydrogen peroxide: A Key chemical for today’s sustainable development. ChemSusChem, 2016, 9(24): 3374-3381. https://doi.org/10.1002/cssc.201600895
  11. Ranganathan S and Sieber V. Recent Advances in the Direct Synthesis of Hydrogen Peroxide Using Chemical Catalysis- A Review. Catalysts, 2018, 8(9): 379. https://doi.org/10.3390/catal8090379
  12. Hage R and Lienke A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angewandte Chemie International Edition, 2006, 45(2): 206-222. https://doi.org/10.1002/anie.200500525
  13. Agarwal N, Freakley SJ, McVicker RU, et al. Aqueous Au- Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science, 2017, 358(6360): 223-227. https://doi.org/10.1126/science.aan6515
  14. Brillas E, Sirs I and Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical reviews, 2009, 109(12): 6570- 6631. https://doi.org/10.1021/cr900136g
  15. Yi Y, Wang L, Li G, et al. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catalysis Science & Technology, 2016, 6(6): 1593-1610. https://doi.org/10.1039/C5CY01567G
  16. Campos-Martin JM, Blanco-Brieva G and Fierro JL. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angewandte Chemie International Edition, 2006, 45(42): 6962-6984. https://doi.org/10.1002/anie.200503779
  17. Weidner E and Pflaum H. Leitprojekt “Strom als Rohstoff”, in Ressourceneffizienz, 2017: 197-238. https://doi.org/10.1007/978-3-662-52889-1_11
  18. Nishimi T, Kamachi T, Kato K, et al. Mechanistic study on the production of hydrogen peroxide in the anthraquinone process. European Journal of Organic Chemistry, 2011, 2011(22): 4113-4120. https://doi.org/10.1002/ejoc.201100300
  19. Lagow RJ and Margrave JL. Direct fluorination: a “new” approach to fluorine chemistry. Progress in Inorganic Chemistry, 1979: 161-210. https://doi.org/10.1002/9780470166277.cH$_3$
  20. Goor G and KunkelWO.Weiberg, Ullmann’s Encyclopedia of Industrial Chemistry, vol. A13, VCH Weinheim, 1989.
  21. Santacesaria E, Di Serio M, Velotti R, et al. Hydrogenation of the aromatic rings of 2-ethylanthraquinone on palladium catalyst. Journal of molecular catalysis, 1994, 94(1): 37-46. https://doi.org/10.1016/0304-5102(94)87028-4
  22. Fajt V, Kurc L and Cervenv L. The effect of solvents on the rate of catalytic hydrogenation of 6-ethyl-1, 2, 3, 4- tetrahydroanthracene-9, 10-dione. International Journal of Chemical Kinetics, 2008, 40(5): 240-252. https://doi.org/10.1002/kin.20309
  23. Albers RE, Nystr¨om M, Siverstr¨om M, et al. Development of a monolith-based process for H2O2 production: from idea to large-scale implementation. Catalysis Today, 2001, 69(1-4): 247-252. https://doi.org/10.1016/S0920-5861(01)00376-5
  24. Hou Y, Wang Y, He F, et al. Liquid phase hydrogenation of 2-ethylanthraquinone over La-doped Ni-B amorphous alloy catalysts. Materials Letters, 2004, 58(7-8): 1267-1271. https://doi.org/10.1016/j.matlet.2003.09.019
  25. Sheldon R and JK Kochi. Metal Catalyzed Oxidations of Organic Compounds. Academic Press, New York, 1981: 75. https://doi.org/10.1016/B978-0-12-639380-4.50007-5
  26. Berglin T and Schoeoen NH. Selectivity aspects of the hydrogenation stage of the anthraquinone process for hydrogen peroxide production. Industrial & Engineering Chemistry Process Design and Development, 1983, 22(1): 150- 153. https://doi.org/10.1021/i200020a024
  27. Santacesaria E, Ferro R, Ricci S, et al. Kinetic aspects in the oxidation of hydrogenated 2-ethyltetrahydroanthraquinone. Industrial & engineering chemistry research, 1987, 26(1): 155-159. https://doi.org/10.1021/ie00061a029
  28. Edwards JK, Solsona B, Ntainjua E, et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science, 2009, 323(5917): 1037-1041. https://doi.org/10.1126/science.1168980
  29. Ford DC, Nilekar AU, Xu Y, et al. Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surface Science, 2010, 604(19-20): 1565-1575. https://doi.org/10.1016/j.susc.2010.05.026
  30. KralikMand Biffis A. Catalysis by metal nanoparticles supported on functional organic polymers. Journal of Molecular Catalysis A: Chemical, 2001, 177(1): 113-138. https://doi.org/10.1016/S1381-1169(01)00313-2
  31. Liu B, Qiao M, Wang J, et al. Highly selective amorphous Ni-Cr-B catalyst in 2-ethylanthraquinone hydrogenation to 2-ethylanthrahydroquinone. Chemical Communications, 2002, 11: 1236-1237. https://doi.org/10.1039/b202499n
  32. Chen X, Hu H, Liu B, et al. Selective hydrogenation of 2-ethylanthraquinone over an environmentally benign Ni B/SBA-15 catalyst prepared by a novel reductantimpregnation method. Journal of Catalysis, 2003, 220(1): 254-257. https://doi.org/10.1016/j.jcat.2003.07.007
  33. Edwards JK, Freakley SJ, Lewis RJ, et al. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today, 2015, 248: 3-9. https://doi.org/10.1016/j.cattod.2014.03.011
  34. Samanta C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Applied Catalysis A: General, 2008, 350(2): 133-149. https://doi.org/10.1016/j.apcata.2008.07.043
  35. Henkel H and Weber W. Manufacture of hydrogen peroxid. Google Patents, 1914.
  36. Edwards JK, Freakley SJ, Carley AF, et al. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Accounts of chemical research, 2013, 47(3): 845-854. https://doi.org/10.1021/ar400177c
  37. Lunsford JH, The direct formation of H2O2 from H2 and O2 over palladium catalysts. Journal of catalysis, 2003, 216(1- 2): 455-460. https://doi.org/10.1016/S0021-9517(02)00070-2
  38. Freakley SJ, He Q, Harrhy JH, et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science, 2016, 351(6276): 965-968. https://doi.org/10.1126/science.aad5705
  39. Edwards JK, Carley AF, Herzing AA, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au- Pd catalysts. Faraday Discussions, 2008, 138: 225-239. https://doi.org/10.1039/B705915A
  40. Edwards JK, Thomas A, Carley AF, et al. Au-Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chemistry, 2008, 10(4): 388-394. https://doi.org/10.1039/B714553P
  41. Ntainjua E, Edwards JK, Carley AF, et al. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry, 2008, 10(11): 1162-1169. https://doi.org/10.1039/b809881f
  42. Ntainjua NE, Piccinini M, Pritchard JC, et al. Effect of halide and acid additives on the direct synthesis of hydrogen peroxide using supported gold-palladium catalysts. Chem- SusChem: Chemistry & Sustainability Energy & Materials, 2009, 2(6): 575-580. https://doi.org/10.1002/cssc.200800257
  43. Edwards JK, Pritchard J, Piccinini M, et al. The effect of heat treatment on the performance and structure of carbonsupported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of catalysis, 2012, 292: 227-238. https://doi.org/10.1016/j.jcat.2012.05.018
  44. Rankin RB and Greeley J. Trends in selective hydrogen peroxide production on transition metal surfaces from first principles. Acs Catalysis, 2012, 2(12): 2664-2672. https://doi.org/10.1021/cs3003337
  45. Blanco-Brieva G, Capel-Sanchez MC, De Frutos MP, et al. New two-step process for propene oxide production (HPPO) based on the direct synthesis of hydrogen peroxide. Industrial & Engineering Chemistry Research, 2008, 47(21): 8011-8015. https://doi.org/10.1021/ie800245r
  46. Jones CW and Clark JH. Introduction to the preparation and properties of hydrogen peroxide. Applications of Hydrogen Peroxide and Derivatives, 1999: 1-36. https://doi.org/10.1039/9781847550132-00001
  47. Zhou B. Nano-Enabled Catalysts for the Commercially Viable Production of H2O2. Lawrenceville (NJ), 2007: 26.
  48. Burch R and Ellis P. An investigation of alternative catalytic approaches for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Applied Catalysis B: Environmental, 2003, 42(2): 203-211. https://doi.org/10.1016/S0926-3373(02)00232-1
  49. Flaherty DW. Direct Synthesis of H2O2 from H2 and O2 on Pd Catalysts: Current Understanding, Outstanding Questions, and Research Needs. ACS Publications, 2018. https://doi.org/10.1021/acscatal.7b04107
  50. Liu Q and Lunsford JH. Controlling factors in the direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst in ethanol. Applied Catalysis A: General, 2006, 314(1): 94- 100. https://doi.org/10.1016/j.apcata.2006.08.014
  51. Centi G, Perathoner S and Abate S. Direct synthesis of hydrogen peroxide: recent advances. Modern Heterogeneous Oxidation Catalysis: Design, Reactions and Characterization, 2009: 253-287. https://doi.org/10.1002/9783527627547.ch8
  52. Moreno T, Garca-Serna J and Cocero MJ. Direct synthesis of hydrogen peroxide in methanol and water using scCO2 and N2 as diluents. Green Chemistry, 2010, 12(2): 282-289. https://doi.org/10.1039/B916788A
  53. WilsonNMand Flaherty DW. Mechanism for the direct synthesis of H2O2 on Pd clusters: heterolytic reaction pathways at the liquid-solid interface. Journal of the American Chemical Society, 2015, 138(2): 574-586. https://doi.org/10.1021/jacs.5b10669
  54. Wilson NM, Priyadarshini P, Kunz S, et al. Direct synthesis of H2O2 on Pd and Au x Pd 1 clusters: Understanding the effects of alloying Pd with Au. Journal of Catalysis, 2018, 357: 163-175. https://doi.org/10.1016/j.jcat.2017.10.028
  55. Chorkendorff I and Niemantsverdriet J. Environmental Catalysis. Concepts of Modern Catalysis and Kinetics, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2003: 377-391.
  56. Kotrel S and Bruninger S. Industrial Electrocatalysis. Handbook of Heterogeneous Catalysis: Online, 2008: 1936- 1958. https://doi.org/10.1002/9783527610044.hetcat0103
  57. Yamanaka I, Onizawa T, Takenaka S, et al. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angewandte Chemie, 2003, 115(31): 3781-3783. https://doi.org/10.1002/ange.200351343
  58. Jirkovsky JS, Panas I, Ahlberg E, et al. Single atom hotspots at Au-Pd nanoalloys for electrocatalytic H2O2 Production. Journal of the American Chemical Society, 2011, 133(48): 19432-19441. https://doi.org/10.1021/ja206477z
  59. Fellinger TP, Hasch´ee F, Strasser P, et al. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. Journal of the American Chemical Society, 2012, 134(9): 4072-4075. https://doi.org/10.1021/ja300038p
  60. Li X, Hao X, Abudula A, et al. Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A, 2016, 4(31): 11973- 12000. https://doi.org/10.1039/C6TA02334G
  61. Chen G, Bare SR and Mallouk TE. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. Journal of the Electrochemical Society, 2002, 149(8): A1092-A1099. https://doi.org/10.1149/1.1491237
  62. Suen NT, Hung SF, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46(2): 337- 365. https://doi.org/10.1039/C6CS00328A
  63. Tahir M, Pan L, Idrees F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37: 136-157. https://doi.org/10.1016/j.nanoen.2017.05.022
  64. Cherevko S, Geiger S, Kasian O, et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catalysis Today, 2016, 262: 170-180. https://doi.org/10.1016/j.cattod.2015.08.014
  65. Malkhandi S, Trinh P, Manohar AK, et al. Electrocatalytic activity of transition metal oxide-carbon composites for oxygen reduction in alkaline batteries and fuel cells. Journal of The Electrochemical Society, 2013, 160(9): F943-F952. https://doi.org/10.1149/2.109308jes
  66. Hardin WG, Mefford JT, Slanac DA, et al. Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. Chemistry of Materials, 2014, 26(11): 3368-3376. https://doi.org/10.1021/cm403785q
  67. Mohamed R, Cheng X, Fabbri E, et al. Electrocatalysis of perovskites: the influence of carbon on the oxygen evolution activity. Journal of The Electrochemical Society, 2015, 162(6): 579-586. https://doi.org/10.1149/2.0861506jes
  68. Minguzzi A, Alpuche-Aviles MA, Lpez JR, et al. Screening of oxygen evolution electrocatalysts by scanning electrochemical microscopy using a shielded tip approach. Analytical chemistry, 2008, 80(11): 4055-4064. https://doi.org/10.1021/ac8001287
  69. Chen X, Botz AJ, Masa J, et al. Characterisation of bifunctional electrocatalysts for oxygen reduction and evolution by means of SECM. Journal of Solid State Electrochemistry, 2016, 20(4): 1019-1027. https://doi.org/10.1007/s10008-015-3028-z
  70. Macounov K, Makarova M, Jirkovskv J, et al. Parallel oxygen and chlorine evolution on Ru1-xNixO2-y nanostructured electrodes. Electrochimica Acta, 2008, 53(21): 6126- 6134. https://doi.org/10.1016/j.electacta.2007.11.014
  71. Zeradjanin AR, Menzel N, Schuhmann W, et al. On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti-Ru- Ir mixed metal oxide electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16(27): 13741-13747. https://doi.org/10.1039/C4CP00896K
  72. Pizzutilo E, Geiger S, Grote JP, et al. On the need of improved accelerated degradation protocols (ADPs): examination of platinum dissolution and carbon corrosion in half-cell tests. Journal of the electrochemical society, 2016, 163(14): 1510-1514. https://doi.org/10.1149/2.0731614jes
  73. Amin HM and Baltruschat H. How many surface atoms in Co3O4 take part in oxygen evolution? Isotope labeling together with differential electrochemical mass spectrometry. Physical Chemistry Chemical Physics, 2017, 19(37): 25527-25536. https://doi.org/10.1039/C7CP03914J
  74. Grimaud A, Diaz-Morales O, Han B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nature chemistry, 2017, 9(5): 457. https://doi.org/10.1038/nchem.2695
  75. Liu X, Jia H, Sun Z, et al. Nanostructured copper oxide electrodeposited from copper (II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochemistry Communications, 2014, 46: 1-4. https://doi.org/10.1016/j.elecom.2014.05.029
  76. Xiao C, Li Y, Lu X, et al. Bifunctional porous NiFe/NiCO2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Advanced Functional Materials, 2016, 26(20): 3515-3523. https://doi.org/10.1002/adfm.201505302
  77. McCrory CC, Jung S, Peters JC, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 2013. 135(45): 16977-16987. https://doi.org/10.1021/ja407115p
  78. Li G, Anderson L, Chen Y, et al. New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media. Sustainable Energy & Fuels, 2018, 2(1): 237-251. https://doi.org/10.1039/C7SE00337D
  79. Qiu Y, Xin L and Li W. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte. Langmuir, 2014, 30(26): 7893-7901. https://doi.org/10.1021/la501246e
  80. Dresp S, Luo F, Schmack R, et al. An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy & Environmental Science, 2016, 9(6): 2020-2024. https://doi.org/10.1039/C6EE01046F
  81. Swesi AT, Masud J and Nath M. Nickel selenide as a highefficiency catalyst for oxygen evolution reaction. Energy & Environmental Science, 2016, 9(5): 1771-1782. https://doi.org/10.1039/C5EE02463C
  82. Hu W, Wang Y, Hu X, et al. Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. Journal of Materials Chemistry, 2012, 22(13): 6010-6016. https://doi.org/10.1039/c2jm16506f
  83. Lee Y, Suntivich J, May KJ, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. The journal of physical chemistry letters, 2012, 3(3): 399-404. https://doi.org/10.1021/jz2016507
  84. Morales-Guio CG, Liardet L and Hu X. Oxidatively electrodeposited thin-film transition metal (oxy) hydroxides as oxygen evolution catalysts. Journal of the American Chemical Society, 2016, 138(28): 8946-8957. https://doi.org/10.1021/jacs.6b05196
  85. Batchellor AS and Boettcher SW. Pulse-electrodeposited Ni-Fe (oxy) hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catalysis, 2015, 5(11): 6680-6689. https://doi.org/10.1021/acscatal.5b01551
  86. Schmidt T, Gasteiger H, St¨ab G, et al. Characterization of highsurfacearea electrocatalysts using a rotating disk electrode configuration. Journal of The Electrochemical Society, 1998, 145(7): 2354-2358. https://doi.org/10.1149/1.1838642
  87. Paulus U, Schmidt T, Gasteiger H, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry, 2001, 495(2): 134-145. https://doi.org/10.1016/S0022-0728(00)00407-1
  88. Armaroli N and Balzani V. The future of energy supply: challenges and opportunities. Angewandte Chemie International Edition, 2007, 46(1-2): 52-66. https://doi.org/10.1002/anie.200602373
  89. Perlo P. Catalysis for Sustainable Energy Production. 2009, 89-105.
  90. Kn¨ozinger H, Infrared spectroscopy for the characterization of surface acidity and basicity. Handbook of Heterogeneous Catalysis: Online, 2008: 1135-1163. https://doi.org/10.1002/9783527610044.hetcat0059
  91. Lobyntseva E, Kallio T, Alexeyeva N, et al. Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies. Electrochimica Acta, 2007, 52(25): 7262- 7269. https://doi.org/10.1016/j.electacta.2007.05.076
  92. Yamanaka I, Hashimoto T, Ichihashi R, et al. Direct synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cell. Electrochimica Acta, 2008, 53(14): 4824- 4832. https://doi.org/10.1016/j.electacta.2008.02.009
  93. Schulenburg H, Stankov S, Sch¨unemann V, et al. Catalysts for the oxygen reduction from heat-treated iron (III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. The Journal of Physical Chemistry B, 2003, 107(34): 9034-9041. https://doi.org/10.1021/jp030349j
  94. Bezerra CW, Zhang L, Lee K, et al. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochimica Acta, 2008, 53(15): 4937-4951. https://doi.org/10.1016/j.electacta.2008.02.012
  95. Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Enabling direct H2O2 production through rational electrocatalyst design. Nature materials, 2013, 12(12): 1137. https://doi.org/10.1038/nmat3795
  96. Sheng W, Gasteiger HA and Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. Journal of The Electrochemical Society, 2010, 157(11): 1529-1536. https://doi.org/10.1149/1.3483106
  97. Ayers KE, Dalton LT and Anderson EB. Efficient generation of high energy density fuel from water. ECS Transactions, 2012, 41(33): 27-38. https://doi.org/10.1149/1.3702410
  98. Viswanathan V, Hansen HA, Rossmeisl J, et al. Unifying the 2e-and 4e-reduction of oxygen on metal surfaces. The journal of physical chemistry letters, 2012, 3(20): 2948-2951. https://doi.org/10.1021/jz301476w
  99. Greeley J, Stephens I, Bondarenko A, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature chemistry, 2009, 1(7): 552. https://doi.org/10.1038/nchem.367
  100. Nrskov JK, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid catalysts. Nature chemistry, 2009, 1(1): 37. https://doi.org/10.1038/nchem.121
  101. Koper MT. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. Journal of Electroanalytical Chemistry, 2011, 660(2): 254-260. https://doi.org/10.1016/j.jelechem.2010.10.004
  102. Stephens IE, Bondarenko AS, Grnbjerg U, et al. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy&Environmental Science, 2012, 5(5): 6744-6762. https://doi.org/10.1039/c2ee03590a
  103. Verdaguer-Casadevall A, Deiana D, Karamad M, et al. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano letters, 2014, 14(3): 1603-1608. https://doi.org/10.1021/nl500037x
  104. Choi CH, Kwon HC, Yook S, et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. The Journal of Physical Chemistry C, 2014, 118(51): 30063-30070. https://doi.org/10.1021/jp5113894
  105. Park J, Nabae Y, Hayakawa T, et al. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catalysis, 2014, 4(10): 3749- 3754. https://doi.org/10.1021/cs5008206
  106. Choi CH, Kim M, Kwon HC, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nature communications, 2016, 7: 10922. https://doi.org/10.1038/ncomms10922
  107. Mase K, Yoneda M, Yamada Y, et al. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nature communications, 2016, 7: 11470. https://doi.org/10.1038/ncomms11470
  108. Izgorodin A, Izgorodina E and MacFarlane DR. Low overpotential water oxidation to hydrogen peroxide on a MnO x catalyst. Energy & Environmental Science, 2012, 5(11): 9496-9501. https://doi.org/10.1039/c2ee21832a
  109. McDonnell-Worth C and MacFarlane DR. Ion effects in water oxidation to hydrogen peroxide. RSC Advances, 2014, 4(58): 30551-30557. https://doi.org/10.1039/C4RA05296J
  110. Viswanathan V, Hansen HA and Nrskov JK. Selective electrochemical generation of hydrogen peroxide from water oxidation. The journal of physical chemistry letters, 2015, 6(21): 4224-4228. https://doi.org/10.1021/acs.jpclett.5b02178
  111. Fuku K and Sayama K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. Chemical Communications, 2016, 52(31): 5406-5409. https://doi.org/10.1039/C6CC01605G
  112. Reier T, Oezaslan M and Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. Acs Catalysis, 2012, 2(8): 1765-1772. https://doi.org/10.1021/cs3003098
  113. Fabbri E, Habereder A, Waltar K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science & Technology, 2014, 4(11): 3800-3821. https://doi.org/10.1039/C4CY00669K
  114. Burke MS, Enman LJ, Batchellor AS, et al. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles. Chemistry of Materials, 2015, 27(22): 7549-7558. https://doi.org/10.1021/acs.chemmater.5b03148
  115. Cheng Y and Jiang SP. Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Progress in natural science: materials international, 2015, 25(6): 545-553. https://doi.org/10.1016/j.pnsc.2015.11.008
  116. Diaz-Morales O, Ledezma-Yanez I, Koper MT, et al. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catalysis, 2015, 5(9): 5380-5387. https://doi.org/10.1021/acscatal.5b01638
  117. Gong M and Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 2015, 8(1): 23-39. https://doi.org/10.1007/s12274-014-0591-z
  118. Diaz-Morales O, Raaijman S, Kortlever R, et al. Iridiumbased double perovskites for efficient water oxidation in acid media. Nature communications, 2016, 7: 12363. https://doi.org/10.1038/ncomms12363
  119. Han B, Risch M, Lee YL, et al. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH. Physical Chemistry Chemical Physics, 2015, 17(35): 22576-22580. https://doi.org/10.1039/C5CP04248H
  120. Dionigi F and Strasser P. NiFe-Based (Oxy) hydroxide Catalysts for Oxygen Evolution Reaction in NonAcidic Electrolytes. Advanced Energy Materials, 2016, 6(23): 1600621. https://doi.org/10.1002/aenm.201600621
  121. Reier T, Nong HN, Teschner D, et al. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts. Advanced Energy Materials, 2017, 7(1): 1601275. https://doi.org/10.1002/aenm.201601275
  122. Spoeri C, Kwan JTH, Bonakdarpour A, et al. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angewandte Chemie International Edition, 2017, 56(22): 5994-6021. https://doi.org/10.1002/anie.201608601
  123. Burke MS, Zou S, Enman LJ, et al. Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy) hydroxides in alkaline media. The journal of physical chemistry letters, 2015, 6(18): 3737-3742. https://doi.org/10.1021/acs.jpclett.5b01650
  124. Hong WT, Welsch RE and Shao-Horn Y. Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. The Journal of Physical Chemistry C, 2015, 120(1): 78-86. https://doi.org/10.1021/acs.jpcc.5b10071
  125. Zou S, Burke MS, Kast MG, et al. Fe(oxy) hydroxide oxygen evolution reaction electrocatalysis: Intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chemistry of Materials, 2015, 27(23): 8011-8020. https://doi.org/10.1021/acs.chemmater.5b03404
  126. Fuku K, Miyase Y, Miseki Y, et al. Enhanced oxidative hydrogen peroxide production on conducting glass anodes modified with metal oxides. ChemistrySelect, 2016, 1(18): 5721-5726. https://doi.org/10.1002/slct.201601469
  127. Fuku K, Miyase Y, Miseki Y, et al. Photoelectrochemical hydrogen peroxide production from water on aWO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chemistry-An Asian Journal, 2017, 12(10): 1111- 1119. https://doi.org/10.1002/asia.201700292
  128. Cai R, Kubota Y and Fujishima A. Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. Journal of Catalysis, 2003, 219(1): 214-218. https://doi.org/10.1016/S0021-9517(03)00197-0
  129. Goto H, Hanada Y, Ohno T, et al. Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles. Journal of Catalysis, 2004, 225(1): 223-229. https://doi.org/10.1016/j.jcat.2004.04.001
  130. Hirakawa T, Yawata K and Nosaka Y. Photocatalytic reactivity for O2 and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Applied Catalysis A: General, 2007, 325(1): 105-111. https://doi.org/10.1016/j.apcata.2007.03.015
  131. Zhang J and Nosaka Y. Quantitative detection of OH radicals for investigating the reaction mechanism of various visible-light TiO2 photocatalysts in aqueous suspension. The Journal of Physical Chemistry C, 2013, 117(3): 1383- 1391. https://doi.org/10.1021/jp3105166
  132. S´anchez-Quiles D and Tovar-S´anchez A. Sunscreens as a source of hydrogen peroxide production in coastal waters. Environmental science & technology, 2014, 48(16): 9037- 9042. https://doi.org/10.1021/es5020696
  133. Shi X, Siahrostami S, Li GL, et al. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nature communications, 2017, 8(1): 701. https://doi.org/10.1038/s41467-017-00585-6
  134. Stamenkovic VR, Mun BS, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature materials, 2007, 6(3): 241. https://doi.org/10.1038/nmat1840
  135. Stephens IE, Bondarenko AS, Perez-Alonso FJ, et al. Tuning the activity of Pt (111) for oxygen electroreduction by subsurface alloying. Journal of the American Chemical Society, 2011, 133(14): 5485-5491. https://doi.org/10.1021/ja111690g
  136. Suntivich J, May KJ, Gasteiger HA, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334(6061): 1383-1385. https://doi.org/10.1126/science.1212858
  137. Bandarenka AS, Varela AS, Karamad M, et al. Design of an Active Site towards Optimal Electrocatalysis: Overlayers, Surface Alloys and Near-Surface Alloys of Cu/Pt (111). Angewandte Chemie International Edition, 2012, 51(47): 11845-11848. https://doi.org/10.1002/anie.201205314
  138. Subbaraman R, Tripkovic D, Chang KC, et al. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nature materials, 2012, 11(6): 550. https://doi.org/10.1038/nmat3313
  139. Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society, 2005, 127(15): 5308-5309. https://doi.org/10.1021/ja0504690
  140. Stamenkovic VR, Fowler B, Mun BS, et al. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. science, 2007, 315(5811): 493-497. https://doi.org/10.1126/science.1135941
  141. Li GL. First-principles investigation of the surface properties of fergusonite-type monoclinic BiVO4 photocatalyst. RSC Advances, 2017, 7(15): 9130-9140. https://doi.org/10.1039/C6RA28006D
  142. Man IC, Su HY, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem- CatChem, 2011, 3(7): 1159-1165. https://doi.org/10.1002/cctc.201000397
  143. Siahrostami S, Bj¨orketun ME, Strasser P, et al. Tandem cathode for proton exchange membrane fuel cells. Physical Chemistry Chemical Physics, 2013, 15(23): 9326-9334. https://doi.org/10.1039/c3cp51479j
  144. Montoya JH, Garcia-Mota M, Nrskov JK, et al. Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting. Physical Chemistry Chemical Physics, 2015, 17(4): 2634-2640. https://doi.org/10.1039/C4CP05259E
  145. Nrskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892. https://doi.org/10.1021/jp047349j
  146. Siahrostami S, Li GL, Viswanathan V, et al. One or two electron water oxidation, hydroxyl radical, or H2O2 evolution. The Journal of Physical Chemistry Letters, 2017, 8(6): 1157-1160. https://doi.org/10.1021/acs.jpclett.6b02924
  147. Wu HL, Yau S and Zei MS Crystalline alloys produced by mercury electrodeposition on Pt (1 1 1) electrode at room temperature. Electrochimica Acta, 2008, 53(20): 5961- 5967. https://doi.org/10.1016/j.electacta.2008.03.063
  148. Erikson H, J¨urmann G, Sarapuu A, et al. Electroreduction of oxygen on carbon-supported gold catalysts. Electrochimica Acta, 2009, 54(28): 7483-7489. https://doi.org/10.1016/j.electacta.2009.08.001
  149. Jirkovskv JS, Halasa M and Schiffrin DJ. Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles. Physical Chemistry Chemical Physics, 2010, 12(28): 8042-8053. https://doi.org/10.1039/c002416c
  150. Gasteiger HA and Markovic NM. Just a dream-or future reality? Science, 2009, 324(5923): 48-49. https://doi.org/10.1126/science.1172083
  151. Vesborg PC and Jaramillo TF. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. Rsc Advances, 2012, 2(21): 7933-7947. https://doi.org/10.1039/c2ra20839c
  152. Mayrhofer KJ, Juhart V, Hartl K, et al. Adsorbate-Induced Surface Segregation for Core-Shell Nanocatalysts. Angewandte Chemie International Edition, 2009, 48(19): 3529- 3531. https://doi.org/10.1002/anie.200806209
  153. Sasaki K, Naohara H, Cai Y, et al. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angewandte Chemie International Edition, 2010, 49(46): 8602-8607. https://doi.org/10.1002/anie.201004287
  154. Cui C, Gan L, Heggen M, et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature materials, 2013, 12(8): 765. https://doi.org/10.1038/nmat3668
  155. Guo S, Li D, Zhu H, et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angewandte Chemie, 2013, 125(12): 3549-3552. https://doi.org/10.1002/ange.201209871
  156. Wang D, Xin HL, Hovden R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature materials, 2013, 12(1): 81. https://doi.org/10.1038/nmat3458
  157. Tomita A, Nakajima J and Hibino T. Direct oxidation of methane to methanol at low temperature and pressure in an electrochemical fuel cell. Angewandte Chemie, 2008, 120(8): 1484-1486. https://doi.org/10.1002/ange.200703928
  158. Kuhl KP, Cave ER, Abram DN, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & Environmental Science, 2012, 5(5): 7050-7059. https://doi.org/10.1039/c2ee21234j
  159. Li CW and Kanan MW. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. Journal of the American Chemical Society, 2012, 134(17): 7231-7234. https://doi.org/10.1021/ja3010978
  160. Rivero PJ, Ibaez E, Goicoechea J, et al. A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide. Sensors and Actuators B: Chemical, 2017, 251: 624-631. https://doi.org/10.1016/j.snb.2017.05.110
  161. Gomes A, Fernandes E and Lima JL. Fluorescence probes used for detection of reactive oxygen species. Journal of biochemical and biophysical methods, 2005, 65(2-3): 45- 80. https://doi.org/10.1016/j.jbbm.2005.10.003
  162. Hanaoka S, Lin JM and Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt (II)-ethanolamine complex immobilized on resin. Analytica Chimica Acta, 2001, 426(1): 57-64. https://doi.org/10.1016/S0003-2670(00)01181-8
  163. Nogueira RFP, Oliveira MC and Paterlini WC. Simple and fast spectrophotometric determination of H2O2 in photo- Fenton reactions using metavanadate. Talanta, 2005, 66(1): 86-91. https://doi.org/10.1016/j.talanta.2004.10.001
  164. Ma L, Yuan R, Chai Y, et al. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on DNA-silver nanohybrids and PDDA-protected gold nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2009, 56(4): 215-220. https://doi.org/10.1016/j.molcatb.2008.05.007
  165. Khan AY and Bandyopadhyaya R. Silver nanoparticle impregnated mesoporous silica as a non-enzymatic amperometric sensor for an aqueous solution of hydrogen peroxide. Journal of Electroanalytical Chemistry, 2014, 727: 184-190. https://doi.org/10.1016/j.jelechem.2014.05.027
  166. Zhang L, Zhai Y, Gao N, et al. Sensing H2O2 with layer-bylayer assembled Fe3O4-PDDA nanocomposite film. Electrochemistry Communications, 2008, 10(10): 1524-1526. https://doi.org/10.1016/j.elecom.2008.05.022
  167. Dhara K, Ramachandran T, Nair BG, et al. Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor. Journal of Electroanalytical Chemistry, 2016, 764: 64-70. https://doi.org/10.1016/j.jelechem.2016.01.011
  168. Becerril HA, Mao J, Liu Z, et al. Evaluation of solutionprocessed reduced graphene oxide films as transparent conductors. ACS nano, 2008, 2(3): 463-470. https://doi.org/10.1021/nn700375n
  169. Shin HJ, Kim KK, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 2009, 19(12): 1987-1992. https://doi.org/10.1002/adfm.200900167
  170. Xiong D, Li X, Shan H, et al. Oxygen-containing functional groups enhancing electrochemical performance of porous reduced graphene oxide cathode in lithium ion batteries. Electrochimica Acta, 2015, 174: 762-769. https://doi.org/10.1016/j.electacta.2015.06.041
  171. Amanulla B, Palanisamy S, Chen SM, et al. A nonenzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite. Journal of colloid and interface science, 2017, 487: 370-377. https://doi.org/10.1016/j.jcis.2016.10.050
  172. Jiang Y, Zheng B, Du J, et al. Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing. Talanta, 2013, 112: 129-135. https://doi.org/10.1016/j.talanta.2013.03.015
  173. Li X, Liu X, Wang W, et al. High loading Pt nanoparticles on functionalization of carbon nanotubes for fabricating nonenzyme hydrogen peroxide sensor. Biosensors and Bioelectronics, 2014, 59: 221-226. https://doi.org/10.1016/j.bios.2014.03.046
  174. Ensafi AA, Zandi-Atashbar N, Rezaei B, et al. Silver nanoparticles decorated carboxylate functionalized SiO2, New nanocomposites for non-enzymatic detection of glucose and hydrogen peroxide. Electrochimica Acta, 2016, 214: 208-216. https://doi.org/10.1016/j.electacta.2016.08.047
  175. Mei H, Wu W, Yu B, et al. Nonenzymatic electrochemical sensor based on Fe@ Pt core-shell nanoparticles for hydrogen peroxide, glucose and formaldehyde. Sensors and Actuators B: Chemical, 2016, 223: 68-75. https://doi.org/10.1016/j.snb.2015.09.044
  176. Li X and Du X. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical, 2017, 239: 536-543. https://doi.org/10.1016/j.snb.2016.08.048
  177. Li D, Meng L, Xiao P, et al. Enhanced non-enzymatic electrochemical sensing of hydrogen peroxide based on Cu2O nanocubes/Ag-Au alloy nanoparticles by incorporation of RGO nanosheets. Journal of Electroanalytical Chemistry, 2017, 791: 23-28. https://doi.org/10.1016/j.jelechem.2017.03.010
  178. Zhang C, Zhang Y, Du X, et al. Facile fabrication of Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing. Talanta, 2016, 159: 280-286. https://doi.org/10.1016/j.talanta.2016.06.047
  179. Liu P, Li J, Liu X, et al. One-pot synthesis of highly dispersed PtAu nanoparticles-CTAB-graphene nanocomposites for nonenzyme hydrogen peroxide sensor. Journal of Electroanalytical Chemistry, 2015, 751: 1-6. https://doi.org/10.1016/j.jelechem.2015.05.027
  180. Guler M, Turkoglu V, Bulut A, et al. Electrochemical sensing of hydrogen peroxide using Pd@ Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochimica Acta, 2018. 263: 118-126. https://doi.org/10.1016/j.electacta.2018.01.048
  181. Barros WR, Wei Q, Zhang G, et al. Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene. Electrochimica Acta, 2015, 162: 263-270. https://doi.org/10.1016/j.electacta.2015.02.175
  182. Li L, Li L, Wang C, et al. Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchimica Acta, 2015, 182(3-4): 763- 770. https://doi.org/10.1007/s00604-014-1383-6
  183. Pizzutilo E, Kasian O, Choi C H, et al. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production. Chemical Physics Letters, 2017, 683: 436-442. https://doi.org/10.1016/j.cplett.2017.01.071
  184. Lu Y, Jiang Y, Gao X, et al. Charge state-dependent catalytic activity of
  185. [Au 25 (SC12 H25) 18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chemical Communications, 2014, 50(62): 8464-8467. https://doi.org/10.1039/C4CC01841A
  186. Lu Z, Chen G, Siahrostami S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 2018, 1(2): 156. https://doi.org/10.1038/s41929-017-0017-x
  187. Assumpao M, Moraes A, De Souza R, et al. Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Applied Catalysis A: General, 2012, 411: 1-6. https://doi.org/10.1016/j.apcata.2011.09.030
  188. Chen Z, Chen S, Siahrostami S, et al. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. Reaction Chemistry & Engineering, 2017, 2(2): 239-245. https://doi.org/10.1039/C6RE00195E
  189. Assumpo M, De Souza R, Rascio D, et al. A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon, 2011, 49(8): 2842-2851. https://doi.org/10.1016/j.carbon.2011.03.014
  190. Barros WR, Reis RM, Rocha RS, et al. Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine. Electrochimica Acta, 2013, 104: 12-18. https://doi.org/10.1016/j.electacta.2013.04.079
  191. Sun Y, Sinev I, Ju W, et al. Efficient Electrochemical Hydrogen Peroxide Production from Molecular Oxygen on Nitrogen-Doped Mesoporous Carbon Catalysts. ACS Catalysis, 2018, 8(4): 2844-2856. https://doi.org/10.1021/acscatal.7b03464
  192. Kim HW, Ross MB, Kornienko N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nature Catalysis, 2018, 1(4): 282. https://doi.org/10.1038/s41929-018-0044-2
  193. Prathap MA, Thakur B, Sawant SN, et al. Synthesis of mesostructured polyaniline using mixed surfactants, anionic sodium dodecylsulfate and non-ionic polymers and their applications in H2O2 and glucose sensing. Colloids and Surfaces B: Biointerfaces, 2012, 89: 108-116. https://doi.org/10.1016/j.colsurfb.2011.09.002
  194. Wang Y, Tang M, Lin X, et al. Sensor for hydrogen peroxide using a hemoglobin-modified glassy carbon electrode prepared by enhanced loading of silver nanoparticle onto carbon nanospheres via spontaneous polymerization of dopamine. Microchimica Acta, 2012, 176(3-4): 405-410. https://doi.org/10.1007/s00604-011-0736-7
  195. Anjalidevi C, Dharuman V and Narayanan JS. Non enzymatic hydrogen peroxide detection at ruthenium oxide-gold nano particle-Nafion modified electrode. Sensors and Actuators B: Chemical, 2013, 182: 256-263. https://doi.org/10.1016/j.snb.2013.03.006
  196. Ricci F and Palleschi G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosensors and Bioelectronics, 2005, 21(3): 389-407. https://doi.org/10.1016/j.bios.2004.12.001
  197. Karyakin AA, Kuritsyna EA, Karyakina EE, et al. Diffusion controlled analytical performances of hydrogen peroxide sensors: Towards the sensor with the largest dynamic range. Electrochimica Acta, 2009, 54(22): 5048-5052. https://doi.org/10.1016/j.electacta.2008.11.049
  198. Arduini F, Ricci F, Tuta CS, et al. Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Analytica Chimica Acta, 2006, 580(2): 155-162. https://doi.org/10.1016/j.aca.2006.07.052
  199. Haghighi B, Hamidi H and Gorton L. Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sensors and Actuators B: Chemical, 2010, 147(1): 270-276. https://doi.org/10.1016/j.snb.2010.03.020
  200. Cao L, Liu Y, Zhang B, et al. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS applied materials & interfaces, 2010, 2(8): 2339-2346. https://doi.org/10.1021/am100372m
  201. Li N, He B, Xu S, et al. In site formation and growth of Prussian blue nanoparticles anchored to multiwalled carbon nanotubes with poly (4-vinylpyridine) linker by layerby- layer assembly. Materials Chemistry and Physics, 2012, 133(2-3): 726-734. https://doi.org/10.1016/j.matchemphys.2012.01.074
  202. Huang L, Huang Y, Liang J, et al. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Research, 2011, 4(7): 675-684. https://doi.org/10.1007/s12274-011-0123-z
  203. Minemawari H, Yamada T, Matsui H, et al. Inkjet printing of single-crystal films. Nature, 2011, 475(7356): 364. https://doi.org/10.1038/nature10313
  204. Hibbard T, Crowley K and Killard AJ. Direct measurement of ammonia in simulated human breath using an inkjetprinted polyaniline nanoparticle sensor. Analytica chimica acta, 2013, 779: 56-63. https://doi.org/10.1016/j.aca.2013.03.051
  205. Gonzalez-Macia L, Morrin A, Smyth MR, et al. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst, 2010, 135(5): 845-867. https://doi.org/10.1039/b916888e
  206. Cinti S, Arduini F, Moscone D, et al. Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed Prussian blue nanoparticles. Sensors, 2014, 14(8): 14222-14234. https://doi.org/10.3390/s140814222
  207. Hu JY, Lin YP and Liao YC. Inkjet printed Prussian Blue films for hydrogen peroxide detection. Analytical sciences, 2012, 28(2): 135-135. https://doi.org/10.2116/analsci.28.135