Open Access Peer-reviewed Research Article

Functionalization of carbopol with NVP for designing antibiotic drug loaded hydrogel dressings for better wound management

Main Article Content

Baljit Singh corresponding author
Abhishek Dhiman

Abstract

In the present work an attempt has been made to design the antibiotic drug loaded carbopol-poly(NVP) based hydrogel wound dressings for better wound care. The polymer films were characterized by SEM-EDX, AFM, FTIR, 13CNMR, TGA/DTA/DTG, DSC, and swelling studies. Besides drug release, various biomedical properties (viz. blood compatibility, mucoadhesion, oxygen permeability, water vapour transmission rate, microbial penetration, tensile strength, bursting strength, resilience, stress relaxation, and folding endurance) have also been studied. The polymer films have been observed to be biocompatible, permeable to oxygen and water vapour and have absorbed simulated wound fluid 11.37±0.31 g/g of polymer film.The drug release profile followed the Case-II diffusion mechanism and release profile best fitted in Hixson-Crowell's kinetic models.Mechanical properties results showed that the polymer film had 0.65±0.12 Nmm-2 tensile strength, 119.38±14.26% elongationand 25.49±0.72% resilience.

Keywords
Drug delivery, 1-Vinyl-2-pyrollidone, Hydrogel, Wound dressing

Article Details

How to Cite
Singh, B., & Dhiman, A. (2019). Functionalization of carbopol with NVP for designing antibiotic drug loaded hydrogel dressings for better wound management. Journal of Pharmaceutical and Biopharmaceutical Research, 1(1), 1-14. https://doi.org/10.25082/JPBR.2019.01.001

References

  1. Chandika P, Ko SC, Jung WK. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biolog Macromol, 2015, 77: 24-35. https://doi.org/10.1016/j.ijbiomac.2015.02.050
  2. Percival SL, Emanuel C, Cutting KF, et al. Microbiology of the skin and the role of biofilms in infection. Int Wound J, 2012, 9: 14-32. https://doi.org/10.1111/j.1742-481X.2011.00836.x
  3. Jiang Q, Wang J, Tang R, et al. Hypromellose succinatecrosslinked chitosan hydrogel films for potential wound dressing.Int J Biolog Macromo, 2016, l91: 85-91. https://doi.org/10.1016/j.ijbiomac.2016.05.077
  4. Tavakoli J, Tang Y. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structuralphysicomechanical and in-vitro biomedical studies. Materials Science and Engineering, 2017, C77: 318-325. https://doi.org/10.1016/j.msec.2017.03.272
  5. Cal´o E, Khutoryanskiy VV. Biomedicalapplications of hydrogels: A review of patents and commercial products Eur Polym J, 2015, 65:252-267. https://doi.org/10.1016/j.eurpolymj.2014.11.024
  6. Slaughter BV, Khurshid SS, Fisher OZ, et al. Hydrogels in regenerative medicine. Adv Mater, 2009, 21: 3307-3329. https://doi.org/10.1002/adma.200802106
  7. Moura LI, Dias AM, Carvalho E, et al.Recent advances on the development of wound dressings for diabetic foot ulcer treatment-a review. Acta biomaterialia, 2013, 9: 7093-7114. https://doi.org/10.1016/j.actbio.2013.03.033
  8. Lloyd LL, Kennedy JF, Methacanon P, et al. Carbohydrate polymers as wound management aids. Carbohydr Polym, 1998, 37: 315-322. https://doi.org/10.1016/S0144-8617(98)00077-0
  9. Song J, Yu R, Wang L, et al. Poly (N-vinylpyrrolidone)- grafted poly (N-isopropylacrylamide) copolymers: synthesis characterization and rapid deswelling and reswelling behavior of hydrogels. Polymer, 2011, 52: 2340-2350. https://doi.org/10.1016/j.polymer.2011.03.038
  10. Telford AM, James M, Meagher L, et al. Thermally crosslinked PNVP films as antifouling coatings for biomedical applications. ACS Appl Mater Interfaces, 2010, 2: 2399- 2408. https://doi.org/10.1021/am100406j
  11. Shahbuddin M, Bullock AJ, MacNeil S, et al. Glucomannan-poly (N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing. J Mater Chem, 2014, B2: 727-738. https://doi.org/10.1039/C3TB21640C
  12. Zheng A, Xue Y, Wei D, et al. Synthesis and characterization of antimicrobial polyvinyl pyrrolidone hydrogel as wound dressing. Soft Mater, 2014, 12: 179-187. https://doi.org/10.1080/1539445X.2013.831357
  13. Smith LE, Rimmer S, MacNeil S. Examination of the effects of poly (N-vinylpyrrolidinone) hydrogels in direct and indirect contact with cells. Biomaterials, 2006, 27: 2806- 2812. https://doi.org/10.1016/j.biomaterials.2005.12.018
  14. Wan LS, Xu ZK, Huang XJ, et al. Hemocompatibility of Poly (acrylonitrilecoNvinyl2pyrrolidone): Swelling Behavior and Water States. Macromol Biosci, 2005, 5: 229-236. https://doi.org/10.1002/mabi.200400157
  15. Bajpai SK, Pathak V, Soni B, et al. CNWs loaded poly (SA) hydrogels: effect of high concentration of CNWs on water uptake and mechanical properties. Carbohydr Polym, 2014, 106: 351-358. https://doi.org/10.1016/j.carbpol.2014.02.069
  16. Islam MT, Rodriguez-Hornedo N, Ciotti S, et al. Rheological characterization of topical carbomer gels neutralized to different pH. Pharma Res, 2004, 21: 1192-1199.
  17. Sahoo S, Pani NR, Sahoo SK. Microemulsion based topical hydrogel of sertaconazole: Formulationcharacterization and evaluation.Colloids SurfB Biointerfaces, 2014, 120: 193- 199. https://doi.org/10.1016/j.colsurfb.2014.05.022
  18. Jana S, Manna S, Nayak AK, et al. CP gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces, 2014, 114: 36-44. https://doi.org/10.1016/j.colsurfb.2013.09.045
  19. Wang Y, Lee CH. Characterization of a female controlled drug delivery system for microbicides. Contraception, 2002, 66(4): 281-287. https://doi.org/10.1016/S0010-7824(02)00354-2
  20. Jaiswal M, Kumar A, Sharma S. Nanoemulsions loaded CP? 934 based gel for intranasal delivery of neuroprotective Centella asiatica extract: invitro and exvivo permeation study. J Pharma Invest, 2016, 46: 79-89. https://doi.org/10.1007/s40005-016-0228-1
  21. Silva JP ,Dhall S, Garcia M, et al. Improved burn wound healing by the antimicrobial peptide LLKKK18 released from conjugates with dextrin embedded in a CP gel. Acta Biomater, 2015, 26: 249-262. https://doi.org/10.1016/j.actbio.2015.07.043
  22. Singh B, Sharma N. Mechanistic implication for crosslinking in sterculia-based hydrogels and their use in GIT drug delivery.Biomacromolecules, 2009, 10: 2515-2532. https://doi.org/10.1021/bm9004645
  23. Ritger PL, Peppas NA. A simple equation for description of solute release I, Fickian and non-Fickian release from nonswellable devices in the form of slabsspherescylinders or discs. J Control Rel, 1987, 5:23-36. https://doi.org/10.1016/0168-3659(87)90034-4
  24. Ritger PL, Peppas NA. A simple equation for description of solute release II, Fickian and anomalous release from swellable devices. J Control Release, 1987, 5: 37-42. https://doi.org/10.1016/0168-3659(87)90035-6
  25. Dash S, Murthy PN, Nath L, et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 2010, 67: 217-223.
  26. Sullad AG, Manjeshwar LS, Aminabhavi TM. Novel pHsensitive hydrogels prepared from the blends of poly (vinyl alcohol) with acrylic acid-graft-guar gum matrixes for isoniazid delivery. Ind Eng Chem Res, 2010, 49: 7323-7329. https://doi.org/10.1021/ie100389v
  27. Imai Y, Nose Y. A new method for evalution of antithrombogenicity of materials. J Biomed Mater Res, 1972, 6: 165- 172. https://doi.org/10.1002/jbm.820060305
  28. Ferreira P, Pereira R, Coelho JFJ, et al. Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. Int J Biolog Macromol, 2007, 40: 144- 152. https://doi.org/10.1016/j.ijbiomac.2006.06.023
  29. Winkler LW. Die bestimmung des im wasser gel?sten sauerstoffes, Berichte der deutschen chemischen Gesellschaft, 1888, 21: 2843-2854. https://doi.org/10.1002/cber.188802102122
  30. Chamb iHNM, Grosso CRF. Mechanical and water vapor permeability properties of biodegradables films based on methylcelluloseglucomannanpectin and gelatin. Food Sci Technol, 2011, 31: 739-746. https://doi.org/10.1590/S0101-20612011000300029
  31. Greenspan L. Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand, 1977, 81: 89-96. https://doi.org/10.6028/jres.081A.011
  32. Wu P, Fisher AC, Foo PP, et al. In vitro assessment of water vapour transmission of synthetic wound dressings. Biomaterials, 1995, 16: 171-175. https://doi.org/10.1016/0142-9612(95)92114-L
  33. Bajpai SK, Saggu SS. Insulin release behaviour of Poly(methacrylamideco Nvinyl2pyrrolidonecoitaconic acid) Hydrogel: An Interesting Probe, Part II. J Macromol Sci A, 2007, 44: 153-157. https://doi.org/10.1080/10601320601030707
  34. Pal K, Banthia AK, Majumdar DK. Preparation of transparent starch based hydrogel membrane with potential application as wound dressing. Trends Biomater Artif Organs, 2006, 20: 59-67.
  35. Wei Y, Xie R ,Lin Y, et al. Structure formation in pHsensitive hydrogels composed of sodium caseinate and NOcarboxymethyl chitosan. Int JBiolog Macromol, 2016, 89: 353-359. https://doi.org/10.1016/j.ijbiomac.2016.04.081
  36. Pramanick AK, Gupta S, Mishra T, et al. Topographical heterogeneity in transparent PVA hydrogels studied by AFM,Mater Sci Eng C, 2012, 32: 222-227. https://doi.org/10.1016/j.msec.2011.10.022
  37. Ahuja M, Thakur K, Kumar A. Amylopectin-g-poly (Nvinyl- 2-pyrrolidone): Synthesischaracterization and in vitro release behaviour.Carbohydr Polym, 2014, 108: 127-134. https://doi.org/10.1016/j.carbpol.2014.03.007
  38. Du J, Liu X, Liu W, et al. One-step preparation of vinylfunctionalized material surfaces: a versatile platform for surface modification. Sci China Chem, 2014, 57: 654-660. https://doi.org/10.1007/s11426-014-5067-1
  39. Patel MM, Smart JD, Nevell TG, et al. Mucin/poly (acrylic acid) interactions: a spectroscopic investigation of mucoadhesion. Biomacromolecules, 2003, 4: 1184-1190. https://doi.org/10.1021/bm034028p
  40. Capra RH, Baruzzi AM, Quinzani LM, et al. Rheologicaldielectric and diffusion analysis of mucin/CP matrices used in amperometric biosensors Sens Actuators B Chem, 2007, 124: 466-476. https://doi.org/10.1016/j.snb.2007.01.022
  41. Szakonyi G, Zelk´o R. CP?-crospovidone interpolymer complex for pH-dependent desloratadine release. J Pharma Biomed Anal, 2016, 123: 141-146. https://doi.org/10.1016/j.jpba.2016.02.012
  42. Zhu X, Lu P, Chen W, et al. Studies of UV crosslinked poly (N-vinylpyrrolidone) hydrogels by FTIRRaman and solidstate NMR spectroscopies.Polymer, 2010, 51: 3054-3063.
  43. Tanodekaew S, Prasitsilp M, Swasdison S, et al. Preparation of acrylic grafted chitin for wound dressing application. Biomaterials, 2004, 25: 1453-1460. https://doi.org/10.1016/j.biomaterials.2003.08.020
  44. Jin S, Gu J, Shi Y, et al. Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. Eur Polym J, 2013, 49: 1871-1880. https://doi.org/10.1016/j.eurpolymj.2013.04.022
  45. Liu S, Luo W, Huang H. Characterization and behavior of composite hydrogel prepared from bamboo shoot cellulose and -cyclodextrin. IntJBiolog Macromol, 2016, 89: 527- 534. https://doi.org/10.1016/j.ijbiomac.2016.05.023
  46. Loh GOK, Tan YTF, Pe KK. Hydrophilic polymer solubilization on norfloxacin solubility in preparation of solid dispersion. Powder Technol, 2014, 256: 462-469. https://doi.org/10.1016/j.powtec.2014.01.089
  47. Bentez-Guerrero M, L´opez-Beceiro J, S´anchez-Jimnez PE, et al. Comparison of thermal behavior of natural and hotwashed sisal fibers based on their main components: Cellulosexylan and lignin, TG-FTIR analysis of volatile products. Thermochimica Acta, 2014, 581: 70-86. https://doi.org/10.1016/j.tca.2014.02.013
  48. Verma SK, Pandey VS, Behari MYK. Gellan gum-g-Nvinyl- 2-pyrrolidone: Synthesisswellingmetal ion uptake and flocculation behavior. Int J Biolog Macromol, 2015, 72: 1292-1300. https://doi.org/10.1016/j.ijbiomac.2014.10.036
  49. Chun MK, Bhusal P, Choi HK. Application of CP/PVP interpolymer complex to prepare mucoadhesive floating granule. Arch Pharmacal Res, 2013, 36: 745-751.
  50. Lin SY ,Yu HL. Thermal stability of methacrylic acid copolymers of Eudragits LSand L30D and the acrylic acid polymer of CP. J Polym Sci A, 1999, 37: 2061-2067. https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13h2061::AID-POLA20i3.0.CO;2-Y
  51. Lee WF, Chiang WH. Swelling and drugrelease behaviour of the poly (AAcoNvinyl pyrrolidone)/chitosan interpenetrating polymer network hydrogels. J Appl Polym Sci, 2004, 91: 2135-2142. https://doi.org/10.1002/app.13353
  52. Shah R, Saha N, Saha P. Influence of temperaturepH and simulated biological solutions on swelling and structural properties of biomineralized (CaCO3) PVPCMC hydrogel. Prog Biomater, 2015, 4: 123-136. https://doi.org/10.1007/s40204-015-0043-1
  53. Singh R, Singh D. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J Mater Sci Mater Med, 2012, 23: 2649-2658. https://doi.org/10.1007/s10856-012-4730-3
  54. Jain GK, Pathan SA, Akhter S, et al. Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles: Influence of chitosan. Polym Degrad Stab, 2010, 95: 2360-2366.
  55. Tally M, Atassi Y. Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly (acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation. Polym, Bulletin, 2016, 1: 26. https://doi.org/10.1007/s00289-016-1649-8
  56. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharma Sci1, 2001, 3: 123-133. https://doi.org/10.1016/S0928-0987(01)00095-1
  57. Tang C, Yin L, Yu J, et al. Swelling behavior and biocompatibility of CPcontaining superporous hydrogel composites. J Appl Polym Sci, 2007, 104: 2785-2791. https://doi.org/10.1002/app.25930
  58. Malik S, Kumar A, Ahuja M. Synthesis of gum kondagogug- poly (N-vinyl-2-pyrrolidone) and its evaluation as a mucoadhesive polymer.Int J Biolog Macromol, 2012, 51: 756- 762. https://doi.org/10.1016/j.ijbiomac.2012.07.009
  59. L R, Wang H, Wang W, et al. Simultaneous radiation induced graft polymerization of N-vinyl-2-pyrrolidone onto polypropylene non-woven fabric for improvement of blood compatibility. Rad Phys Chem,2013, 88: 65-69. https://doi.org/10.1016/j.radphyschem.2013.03.013
  60. Hall DJ, Khutoryanskaya OV, Khutoryanskiy VV. Developing synthetic mucosa-mimetic hydrogels to replace animal experimentation in characterisation of mucoadhesive drug delivery systems. Soft Matter, 2011, 7: 9620-9623. https://doi.org/10.1039/c1sm05929g
  61. Sajeesh S, Sharma CP. Mucoadhesive hydrogel microparticles based on poly (methacrylic acid-vinyl pyrrolidone)- chitosan for oral drug delivery. Drug Deliv, 2011, 18:227- 235. https://doi.org/10.3109/10717544.2010.528067
  62. Zhang D, Zhou W, Wei B, et al. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydr Polym, 2015, 125: 189-199. https://doi.org/10.1016/j.carbpol.2015.02.034
  63. Dias AMA, Rey-Rico A, Oliveira RA, et al. Wound dressings loaded with an anti-inflammatory juca (Libidibia ferrea) extract using supercritical carbon dioxide technology. J Supercrit Fluids, 2013, 74: 34-45. https://doi.org/10.1016/j.supflu.2012.12.007
  64. Wittaya-areekul S, Prahsarn C. Development and in vitro evaluation of chitosanpolysaccharides composite wound dressings. Int JPharma, 2006, 313: 123-128. https://doi.org/10.1016/j.ijpharm.2006.01.027
  65. Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog Polym Sci, 2013, 38: 584-671. https://doi.org/10.1016/j.progpolymsci.2012.05.003
  66. Borde A, Larsson M, Odelberg Y, et al. Increased water transport in PDMS silicone films by addition of excipients. Acta Biomater, 2012, 8: 579-588. https://doi.org/10.1016/j.actbio.2011.09.022