Research Article
Hypsometric analysis of major glaciers of Shigar river basin in the Karakoram mountain range
Unique environment and multifaceted mountain geo-dynamics of Karakoram disguise the variations present in the hypsometries (frequency distribution of altitudes). We report hypsometry of mountain glaciers of Shigar river basin (with a 7046 km² land-covered area) in the Karakoram, to understand area-elevation relations of glacier environments and effects of magnitude of glaciated-area and location of Equilibrium Line Altitude (ELA). We apply a method based on histogram analysis of glacier hypsometry and a pixel-based regression tool on an updated version of glacier outlines. A big portion of the largest glaciated area (20.63%) of Shiger river basin lies between mixed (high velocity), net accumulation (low velocity) regime of horizontal zone and clean-dusty regime of vertical zone. The smallest glaciated area is found in the extreme ends of the high (in the net avalanche accumulation and low velocity zone and temperature below -18° C) and low (the mostly debris and clean dust-covered ice, net ablation and medium velocity area) altitudes. There are major differences in the hypsometry of the smallest and largest glaciers like except Panmah glacier, large portions of largest glaciers (e.g. Baltoro, Biafo and Chogo Lungma) lies at ELA. Smallest glaciated area lies in low altitudes may contribute melt-water significantly to Indus river rise due to their shorter response times as compared to larger glaciers. The high elevation precipitation may sustain the glaciers of this basin whose melt-waters, especially those from largest glaciers, in turn feed the Shigar river. This dependence of the river on glacial and ice melt is manifested in the huge seasonal variation in its flow.
Carbamazepine (CBM), a widely occurring pharmaceutical, has been removed from water by upgrading a waste biomass char from a 300 MW biomass gasification power station plant operating in Indonesia. The fuel source is the waste residue palm kernel shell (PKS) after the palm oil extraction process constituting over one million tonnes per year. The resulting waste power station biomass char (CPKS) from the power station gasification process has been converted into high quality activated carbon by carbon dioxide activation as a sequestration opportunity, at different temperatures ranging from 700 to 900°C for 1 or 1.5 hours. The highest BET surface area was 711.5 m2/g and this activated carbon was able to adsorb 1.14 mmol/g or 268.7 mg CBM/g. Equilibrium and kinetic studies have been undertaken.
Near real-time one-dimensional vertical electron density profiles are determined from GPS-derived total electron content (TEC) data by means of the iterative conjugate gradient projection method (CGP). Electron density profiles are determined in near realtime (within minutes of the time of measurement) from short time series of slant TEC (STEC) approximately 5 minutes. Measured STEC values are obtained from dual frequency data from a single GPS satellite at a single dual frequency receiver station. Both code-based TEC derived from the P-observable (Ptec) and phase-based TEC derived from the carrier phase observable (Ltec) are used in the solution. The CGP method addresses the ill-posed inverse problem of determining the electron density profiles from TEC measurements through the application of a side constraint to the acceptable solution. This is an iterative method which approximates the solution of a least squares problem through a converging sequence of solutions. The accuracy of the results is verified by comparison to electron density determined from the ionograms measured with Digisondes (Pushkov Institute of Terrestrial Magnetizm, Ionosphere and Radio Wave Propagation, Russian Academy of Science) located at Troizk, Moscow region (55.5N, 37.3E). The results of a hardware-software complex intended for monitoring the Earth's ionosphere according to navigation satellite systems are presented. The anomalous behavior of the critical frequency of the F2-layer ionosphere at latitudes 57-59 degrees observed in December 2014 is detected.
Case Study
The upgrading and reconstruction projects of the wastewater treatment plant(WWTP)in Leshan city are introduced,through investigation and analysis of the current situation of WWTP, while considering to meet water quality demands of effluent. The article presents the programs of Anoxic-Aerobic Membrane Bioreactor(A/O-MBR). Following an investigation and multiple upgrading of the plant, water quality reaches first grade A standard of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).
Review
Pages 18-22
Research progress and developing prospect of fly ash
The perspectives of the quality and composition of fly ash.The comprehensive usage of fly ash hazard-free treatment and recycling of fly ash.The application of fly ash in construction,agriculture,industrial production,and environmental protection.The status quo and prospects of China’s comprehensive usage of fly ash.
Pinch analysis, as a technique to optimise the utilisation of resources, traces its beginnings to the 1970s in Switzerland and the UK – ETH Zurich and Leeds University to be more precise. Over four decades down the line, this methodology has entrenched itself in research circles around the world. While the technique was developed, to begin with, for energy (heat) recovery, it has since then expanded to embrace several other fields, and enabled optimisation of resource utilisation in general. The motive behind this article is to perform a focused, selective review of recent case studies from the developing world and transition economies, having ‘pinch analysis’ in their titles and thereby as their ‘core, crux and gist’, during the period 2008-2018. The resources focused on, include heat energy, electrical energy, water, solid waste, money, time, land (surface area), storage space (volume), human resources, mass of resources in general and hydrogen, while a handful of publications have their focus on carbon dioxide (greenhouse gases in general) emissions. Multi-dimensional pinch analysis promises to be an effective tool for sustainability analysis in the years to come; most importantly in the developing world where social well-being and economic development are priorities in the years ahead, and they ought to be attained by a simultaneous truncation of the environmental footprint, in other words, an optimisation of resource utilisation as well as adverse environmental impacts. In other words, the focus ought to be on sustainable production (efficiency) and consumption (sufficiency).