Open Access Peer-reviewed Research Article

Modeling & optimization of Ti6Al4V turning for sustainable shearing considering rake angle

Main Article Content

Amit Patil corresponding author
Sushil Ingle

Abstract

Titanium alloys, such as Ti6Al4V, have become increasingly prevalent in aerospace and biomedical industries owing to their exceptional mechanical properties and corrosion resistance. However, the machining of these alloys presents significant challenges including high tool wear, poor surface finish, and low productivity. This study focused on enhancing the machinability of Ti6Al4V during CNC turning using the Taguchi optimization method. This approach aims to identify the optimal cutting parameters that minimize the surface roughness, flank wear, and crater wear, thereby improving the overall machining performance. This study systematically investigated the influence of various cutting parameters on machining outcomes. The experimental results demonstrate that the Taguchi method effectively determines the optimal process parameters, leading to a significant reduction in surface roughness and tool wear. These findings highlight the potential of the Taguchi optimization technique for achieving improved machinability and sustainability in the machining of Ti6Al4V.

Keywords
Ti6Al4V, Taguchi optimization, rake angle, machinability

Article Details

Supporting Agencies
The authors thank the Department of Mechanical Engineering, Institute of Engineering, Bhujbal Knowledge City, Adgaon, Nashik for their kind help and technical support in carrying out this research.
How to Cite
Patil, A., & Ingle, S. (2024). Modeling & optimization of Ti6Al4V turning for sustainable shearing considering rake angle. Research on Intelligent Manufacturing and Assembly, 3(1), 118-128. https://doi.org/10.25082/RIMA.2024.01.004

References

  1. Raghavendra, S., Sathyanarayana, P. S., S, S., Vs, T., & Kn, M. (2020). High speed machining of titanium Ti 6Al4V alloy components: study and optimisation of cutting parameters using RSM. Advances in Materials and Processing Technologies, 8(1), 277–290. https://doi.org/10.1080/2374068x.2020.1806684
  2. Sharma, S., & Meena, A. (2020). Microstructure attributes and tool wear mechanisms during high-speed machining of Ti-6Al-4V. Journal of Manufacturing Processes, 50, 345–365. https://doi.org/10.1016/j.jmapro.2019.12.029
  3. Patil, A., Sunnapwar, V., Bhole, K., Patel, R., Bharambe, M., & Shinde, S. (2024). Investigation of open pocket 3D milling of Ti6Al4V by grey relational approach. INTERNATIONAL CONFERENCE ON INNOVATION IN MECHANICAL AND CIVIL ENGINEERING (i-MACE 2022), 3013, 020006. https://doi.org/10.1063/5.0204425
  4. Patil, A. S., Sunnapwar, V. K., & Bhole, K. S. (2023). Effect of hybrid tri-nano flood cooling environment and shearing parameters on surface quality with tool health in helical milling of Ti6Al4V. International Journal on Interactive Design and Manufacturing (IJIDeM), 18(10), 7039–7057. https://doi.org/10.1007/s12008-023-01286-9
  5. Sushil I, Amit P, Rohit P. Machining Challenges in Stainless Steel – A Review. International Journal of Advanced in Research Ideas Innovation Technology. 2017, 3(6): 1395–1402.
  6. Zhang, X., Yu, H., Li, C., Yu, Z., Xu, J., Li, Y., & Yu, H. (2022). Study on In-Situ Tool Wear Detection during Micro End Milling Based on Machine Vision. Micromachines, 14(1), 100. https://doi.org/10.3390/mi14010100
  7. Varghese, A., Kulkarni, V., & Joshi, S. S. (2022). Modeling cutting edge degradation by chipping in micro-milling. Wear, 488–489, 204141. https://doi.org/10.1016/j.wear.2021.204141
  8. Nowakowski, L., Skrzyniarz, M., Blasiak, S., & Bartoszuk, M. (2020). Influence of the Cutting Strategy on the Temperature and Surface Flatness of the Workpiece in Face Milling. Materials, 13(20), 4542. https://doi.org/10.3390/ma13204542
  9. Patil, A. S., Sunnapwar, V. K., Bhole, K. S., Ingle, S. V., & Singh, D. (2024). Performance Analysis of Solid and Hollow End Mills Under Hybrid Nano Flood Coolant in Milling of Titanium Alloy-5. Journal of The Institution of Engineers (India): Series C, 105(5), 1233–1245. https://doi.org/10.1007/s40032-024-01080-w
  10. Patil, A. S., Sunnapwar, V. K., & Bhole, K. S. (2023). Cumulative effect of Shearing parameters and Ramp angle on Hole surface quality in Ti6Al4V by Helical milling strategy. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.08.050
  11. YURTKURAN, H. (2021). An Evaluation on Machinability Characteristics of Titanium and Nickel Based Superalloys Used in Aerospace Industry. İmalat Teknolojileri ve Uygulamaları, 2(2), 10–29. https://doi.org/10.52795/mateca.940261
  12. Pimenov, D. Yu., Mia, M., Gupta, M. K., Machado, A. R., Tomaz, Í. V., Sarikaya, M., Wojciechowski, S., Mikolajczyk, T., & Kapłonek, W. (2021). Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect. Journal of Materials Research and Technology, 11, 719–753. https://doi.org/10.1016/j.jmrt.2021.01.031
  13. Chen, G., Caudill, J., Chen, S., & Jawahir, I. S. (2022). Machining-induced surface integrity in titanium alloy Ti-6Al-4V: An investigation of cutting edge radius and cooling/lubricating strategies. Journal of Manufacturing Processes, 74, 353–364. https://doi.org/10.1016/j.jmapro.2021.12.016
  14. Gupta, K., & Laubscher, R. F. (2016). Sustainable machining of titanium alloys: A critical review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(14), 2543–2560. https://doi.org/10.1177/0954405416634278
  15. Çelik YH, Karabiyik A. Effect of cutting parameters on machining surface and cutting tool in milling of Ti-6Al-4V alloy. Indian Journal of Engineering Materials of Science. 2016, 23(5): 349–356.
  16. Yang, Y., Zhang, C., Wang, Y., Dai, Y., & Luo, J. (2016). Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester. Tribology International, 95, 27–34. https://doi.org/10.1016/j.triboint.2015.10.031
  17. Kumar, P., & Misra, J. P. (2019). Optimization of Machining Parameters During Dry Cutting of Ti6Al4V Using Taguchi’s Orthogonal Array. Emerging Trends in Mechanical Engineering, 229–243. https://doi.org/10.1007/978-981-32-9931-3_23
  18. Hanish Anand, S., Venkateshwaran, N., Sai Prasanna Kumar, J. V., Kumar, D., Ramesh Kumar, C., & Maridurai, T. (2021). Optimization of Aging, Coating Temperature and Reinforcement Ratio on Biosilica Toughened in-situ Al-TiB2 Metal Matrix Composite: a Taguchi Grey Relational Approach. Silicon, 14(8), 4337–4347. https://doi.org/10.1007/s12633-021-01232-y
  19. Puthumana G, Vipindas MP. Taguchi-Based Optimization of Surface Roughness in CNC Turning Operation. International Journal of Latest Trends in Engineering and Technology. 2013, 2(4): 454-463.
  20. Khorasani, A. M., Reza Soleymani Yazdi, M., & Safizadeh, M. S. (2011). Tool Life Prediction in Face Milling Machining of 7075 Al by Using Artificial Neural Networks (ANN) and Taguchi Design of Experiment (DOE). International Journal of Engineering and Technology, 3(1), 30–35. https://doi.org/10.7763/ijet.2011.v3.196
  21. Chaharsooghi S, Version D, Rights P. Cryogenic Machining of Titanium Alloy. 2019.
  22. Shokrani, A., Dhokia, V., & Newman, S. T. (2016). Comparative investigation on using cryogenic machining in CNC milling ofTi-6Al-4Vtitanium alloy. Machining Science and Technology, 20(3), 475–494. https://doi.org/10.1080/10910344.2016.1191953
  23. Kumar, R., & Sahoo, A. K. (2020). Pulsating minimum quantity lubrication assisted high speed turning on bio-medical Ti-6Al-4V ELI Alloy: An experimental investigation. Mechanics & Industry, 21(6), 625. https://doi.org/10.1051/meca/2020097
  24. Perumal A, Kailasanathan C, Stalin B, et al. Multiresponse Optimization of Wire Electrical Discharge Machining Parameters for Ti-6Al-2Sn-4Zr-2Mo ($alpha$-$beta$) Alloy Using Taguchi-Grey Relational Approach. Advances in Materials Science and Engineering. 2022, 1: 6905239. https://doi.org/10.1155/2022/6905239
  25. Rajan, K. M., Kumar Sahoo, A., Chandra Routara, B., & Kumar, R. (2021). Investigation on surface roughness, tool wear and cutting power in MQL turning of bio-medical Ti-6Al-4V ELI alloy with sustainability. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(4), 1452–1466. https://doi.org/10.1177/09544089211063712