Open Access Peer-reviewed Review

Roles of polymer brushes in biological applications

Main Article Content

Ajinkya Raut
Peter Renner
Rick Wang
Serge Kazadi
Siddhi Mehta
Yan Chen
Hong Liang corresponding author

Abstract

Polymer brushes are macromolecular structures with polymer chains tethered to a surface resembling a brush. They have shown variety of uses in biological applications. Because of the nature of crafted polymers, the functionalized surfaces exhibit unique functions such as low friction, altered adhesion, protein binding and selective adsorption. Functionalization can be controlled by changing parameters such as grafting densities, chemical configurations, shapes and thickness. In this review, a particular emphasis has been provided for studies related to biological applications of polymer brushes based on their ultra-low friction, hydrophilic elongated surfaces, and binding properties. It provides useful information for researches and labs working on finding better solutions for drug delivery, arthritis, artificial joints, antibiofouling coatings and protein immobilization and purification.

Keywords
grafting density, drug delivery, anti-biofouling, ultra-low friction, protein immobilization

Article Details

Supporting Agencies
Peter Renner was supported by the National Science Foundation (NSF) Graduate Research Fellowship.
How to Cite
Raut, A., Renner, P., Wang, R., Kazadi, S., Mehta, S., Chen, Y., & Liang, H. (2021). Roles of polymer brushes in biological applications. Advances in Biochips, 2(1), 12-23. https://doi.org/10.25082/AB.2021.01.001

References

  1. Murat M and Grest GS. Structure of a grafted polymer brush: a molecular dynamics simulation. Macromolecules, 1989, 22(10): 4054-4059. https://doi.org/10.1021/ma00200a041
  2. Alexander S. Adsorption of chain molecules with a polar head a scaling description. Journal De Physique, 1977, 38(8): 983-987. https://doi.org/10.1051/jphys:01977003808098300
  3. de Gennes P. Conformations of polymers attached to an interface. Macromolecules, 1980, 13(5): 1069-1075. https://doi.org/10.1021/ma60077a009
  4. Milner ST, Witten TA and Cates ME. Theory of the grafted polymer brush. Macromolecules, 1988, 21(8): 2610-2619. https://doi.org/10.1021/ma00186a051
  5. De Gennes P. Polymers at an interface: a simplified view. Advances in Colloid & Interface Science, 1987, 27(3-4): 189-209. https://doi.org/10.1016/0001-8686(87)85003-0
  6. Milner S, Witten T and Cates M. Effects of polydispersity in the end-grafted polymer brush. Macromolecules, 1989, 22(2): 853-861. https://doi.org/10.1021/ma00192a057
  7. Milner ST. Polymer brushes. Science, 1991, 251(4996): 905-914. https://doi.org/10.1126/science.251.4996.905
  8. Halperin A, Tirrell M and Lodge T. Tethered chains in polymer microstructures. In: Macromolecules: Synthesis, Order and Advanced Properties. Springer,1992: 31-71. https://doi.org/10.1007/BFb0051635
  9. Raviv U, Giasson S, Kampf N, et al. Lubrication by charged polymers. Nature, 2003, 425(6954): 163-165. https://doi.org/10.1038/nature01970
  10. Sakata H, Kobayashi M, Otsuka H, et al. Tribological properties of poly (methyl methacrylate) brushes prepared by surface-initiated atom transfer radical polymerization. Polymer Journal, 2005, 37(10): 767-775. https://doi.org/10.1295/polymj.37.767
  11. Kobayashi M, Terayama Y, Hosaka N, et al. Friction behavior of high-density poly (2- methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter, 2007, 3(6): 740-746. https://doi.org/10.1039/b615780g
  12. Chen M, Briscoe WH, Armes SP, et al. Lubrication at physiological pressures by polyzwitterionic brushes. science, 2009, 323(5922): 1698-1701. https://doi.org/10.1126/science.1169399
  13. Tsujii Y, Nomura A, Okayasu K, et al. AFM studies on microtribology of concentrated polymer brushes in solvents. In IOP Publishing, 2009: 012031. https://doi.org/10.1088/1742-6596/184/1/012031
  14. Kitano K, Inoue Y, Matsuno R, et al. Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM. Colloids Surf B Biointerfaces, 2009, 74(1): 350-357. https://doi.org/10.1016/j.colsurfb.2009.08.004
  15. Ishikawa T, Kobayashi M and Takahara A. Macroscopic frictional properties of poly (1-(2- methacryloyloxy) ethyl-3-butyl imidazolium bis (trifluoromethanesulfonyl)-imide) brush surfaces in an ionic liquid. ACS Appl Mater Interfaces, 2010, 2(4): 1120-1128. https://doi.org/10.1021/am9009082
  16. Nomura A, Okayasu K, Ohno K, et al. Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules, 2011, 44(12): 5013-5019. https://doi.org/10.1021/ma200340d
  17. Chen M, Briscoe WH, Armes SP, et al. Polyzwitterionic brushes: Extreme lubrication by design. European Polymer Journal, 2011, 47(4): 511-523. https://doi.org/10.1016/j.eurpolymj.2010.10.007
  18. Kobayashi M, Terada M and Takahara A. Reversible adhesive-free nanoscale adhesion utilizing oppositely charged polyelectrolyte brushes. Soft Matter, 2011, 7(12): 5717-5722. https://doi.org/10.1039/c1sm05132f
  19. Nomura A, Ohno K, Fukuda T, et al. Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent viscosity. Polymer Chemistry, 2012, 3(1): 148-153. https://doi.org/10.1039/C1PY00215E
  20. Kobayashi M, Terayama Y, Yamaguchi H, et al. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir, 2012, 28(18): 7212-7222. https://doi.org/10.1021/la301033h
  21. Bielecki RM, Benetti EM, Kumar D, et al. Lubrication with oil-compatible polymer brushes. Tribology Letters, 2012, 45(3): 477-487. https://doi.org/10.1007/s11249-011-9903-6
  22. Kobayashi M, Tanaka H, Minn M, et al. Interferometry study of aqueous lubrication on the surface of polyelectrolyte brush. Acs Applied Materials & Interfaces, 2014, 6(22): 20365-20371. https://doi.org/10.1021/am505906h
  23. Mocny P and Klok H-A. Tribology of surface-grafted polymer brushes. Molecular Systems Design & Engineering, 2016, 1(2): 141-154. https://doi.org/10.1039/C5ME00010F
  24. Orski SV, Fries KH, Sontag SK, et al. Fabrication of nanostructures using polymer brushes. Journal of Materials Chemistry, 2011, 21(37): 14135-14149. https://doi.org/10.1039/c1jm11039j
  25. McCutchen CW. The frictional properties of animal joints. Wear, 1962, 5(1): 1-17. https://doi.org/10.1016/0043-1648(62)90176-X
  26. Yu Y, Sun H and Cheng C. Brush polymer-based nanostructures for drug delivery. In: Nanostructures for Drug Delivery. Elsevier, 2017: 271-298. https://doi.org/10.1016/B978-0-323-46143-6.00008-7
  27. Ünal H. Antibiofilm Coatings. In: Handbook of Antimicrobial Coatings . Elsevier, 2018: 301-319. https://doi.org/10.1016/B978-0-12-811982-2.00015-9
  28. Jain P, Baker GL and Bruening ML. Applications of Polymer Brushes in Protein Analysis and Purification. Annual Review of Analytical Chemistry, 2009, 2(1): 387-408. https://doi.org/10.1146/annurev-anchem-060908-155153
  29. D˙edinait˙e A. Biomimetic lubrication. Soft Matter, 2012, 8(2): 273-284. https://doi.org/10.1039/C1SM06335A
  30. Chen M, Briscoe WH, Armes SP, et al. Lubrication at Physiological Pressures by Polyzwitterionic Brushes. Science, 2009, 323(5922): 1698-1701. https://doi.org/10.1126/science.1169399
  31. Raviv U, Giasson S, Kampf N, et al. Lubrication by charged polymers. Nature, 2003, 425(6954): 163-165. https://doi.org/10.1038/nature01970
  32. Kobayashi M and Takahara A. Tribological properties of hydrophilic polymer brushes under wet conditions. Chemical Record, 2010, 10(4): 208-216. https://doi.org/10.1002/tcr.201000001
  33. Bielecki RM, Crobu M and Spencer ND. Polymer-Brush Lubrication in Oil: Sliding Beyond the Stribeck Curve. Tribology Letters, 2013, 49(1): 263-272. https://doi.org/10.1007/s11249-012-0059-9
  34. M. Espinosa-Marzal R, M. Bielecki R and D. Spencer N. Understanding the role of viscous solvent confinement in the tribological behavior of polymer brushes: a bioinspired approach. Soft Matter, 2013, 9(44): 10572-10585. https://doi.org/10.1039/c3sm51415c
  35. Bielecki RM, Doll P and Spencer ND. Ultrathin, Oil-Compatible, Lubricious Polymer Coatings: A Comparison of Grafting-To and Grafting-From Strategies. Tribology Letters, 2013, 49(1): 273-280. https://doi.org/10.1007/s11249-012-0065-y
  36. Ma L, Gaisinskaya-Kipnis A, Kampf N, et al. Origins of hydration lubrication. Nature Communications, 2015, 6(1): 6060. https://doi.org/10.1038/ncomms7060
  37. Kajinami N and Matsumoto M. Polymer brush in articular cartilage lubrication: Nanoscale modelling and simulation. Biophysics and Physicobiology, 2019, 16: 466-472. https://doi.org/10.2142/biophysico.16.0 466
  38. Liu G, Liu Z, Li N, et al. Hairy Polyelectrolyte Brushes-Grafted Thermosensitive Microgels as Artificial Synovial Fluid for Simultaneous Biomimetic Lubrication and Arthritis Treatment. Acs Applied Materials & Interfaces, 2014, 6(22): 20452-20463. https://doi.org/10.1021/am506026e
  39. Andronescu E and Grumezescu AM. Nanostructures for drug delivery. Amsterdam, Netherlands: Elsevier, 2017: 985. (Nanostructures in therapeutic medicine series).
  40. Sano K, Nakajima T, Choyke PL, et al. Markedly Enhanced Permeability and Retention Effects Induced by Photo-immunotherapy of Tumors. ACS Nano, 2013, 7(1): 717-724. https://doi.org/10.1021/nn305011p
  41. Yu Y, Chen C-K, Law W-C, et al. A degradable brush polymer-drug conjugate for pH-responsive release of doxorubicin. Polym Chem. 2015;6(6):953-61. https://doi.org/10.1039/C4PY01194E
  42. Du J-Z, Tang L-Y, Song W-J, et al. Evaluation of Polymeric Micelles from Brush Polymer with Poly("-caprolactone)- b -Poly(ethylene glycol) Side Chains as Drug Carrier. Biomacromolecules, 2009, 10(8): 2169-2174. https://doi.org/10.1021/bm900345m
  43. Zhao P, Liu L, Feng X, et al. Molecular Nanoworm with PCL Core and PEO Shell as a Non-spherical Carrier for Drug Delivery. Macromolecular Rapid Communications, 2012, 33(16): 1351-1355. https://doi.org/10.1002/marc.201200172
  44. Johnson JA, Lu YY, Burts AO, et al. Drug-Loaded, Bivalent-Bottle-Brush Polymers by Graft-through ROMP. Macromolecules, 2010, 43(24): 10326-10335. https://doi.org/10.1021/ma1021506
  45. Johnson JA, Lu YY, Burts AO, et al. Core-Clickable PEG- Branch -Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To. Journal of the American Chemical Society, 2011, 133(3): 559-566. https://doi.org/10.1021/ja108441d
  46. Yu Y, Chen C-K, Law W-C, et al. Well-Defined Degradable Brush Polymer-Drug Conjugates for Sustained Delivery of Paclitaxel. Molecular Pharmaceutics, 2013, 10(3): 867-874. https://doi.org/10.1021/mp3004868
  47. Zou J, Yu Y, Li Y, et al. Well-defined diblock brush polymer-drug conjugates for sustained delivery of paclitaxel. Biomaterials science, 2015, 3(7): 1078-1084. https://doi.org/10.1039/C4BM00458B
  48. Yang YQ, Zheng LS, Guo XD, et al. pH-Sensitive Micelles Self-Assembled from Amphiphilic Copolymer Brush for Delivery of Poorly Water-Soluble Drugs. Biomacromolecules, 2011, 12(1): 116-122. https://doi.org/10.1021/bm101058w
  49. Nowinski AK, Sun F, White AD, et al. Sequence, Structure, and Function of Peptide Self-Assembled Monolayers. Journal of the American Chemical Society, 2012, 134(13): 6000-6005. https://doi.org/10.1021/ja3006868
  50. White AD, Nowinski AK, Huang W, et al. Decoding nonspecific interactions from nature. Chemical Science, 2012, 3(12): 3488-3494. https://doi.org/10.1039/c2sc21135a
  51. Gottenbos B, van der Mei HC, Klatter F, et al. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials, 2002, 23(6): 1417- 1423. https://doi.org/10.1016/S0142-9612(01)00263-0
  52. Gudipati CS, Finlay JA, Callow JA, et al. The Antifouling and Fouling-Release Perfomance of Hyperbranched Fluoropolymer (HBFP)-Poly(ethylene glycol) (PEG) Composite Coatings Evaluated by Adsorption of Biomacromolecules and the Green Fouling Alga Ulva. Langmuir, 2005, 21(7): 3044-3053. https://doi.org/10.1021/la048015o
  53. Lienkamp K, Madkour AE, Kumar K, et al. Antimicrobial Polymers Prepared by Ring-Opening Metathesis Polymerization: Manipulating Antimicrobial Properties by Organic Counterion and Charge Density Variation. Chemistry - A European Journal, 2009, 15(43): 11715-11722. https://doi.org/10.1002/chem.200900606
  54. Cheng G, Li G, Xue H, et al. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, 2009, 30(28): 5234-5240. https://doi.org/10.1016/j.biomaterials.2009.05.058
  55. Zhang Z, Zhang M, Chen S, et al. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008, 29(32): 4285-4291. https://doi.org/10.1016/j.biomaterials.2008.07.039
  56. Kathmann EE, White LA and McCormick CL. Water soluble polymers: 70. Effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer, 1997, 38(4): 879-886. https://doi.org/10.1016/S0032-3861(96)00587-3
  57. Viklund C and Irgum K. Synthesis of porous zwitterionic sulfobetaine monoliths and characterization of their interaction with proteins. Macromolecules, 2000, 33(7): 2539-2544. https://doi.org/10.1021/ma991965+
  58. Cao B, Tang Q, Li L, et al. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Advanced Healthcare Materials, 2013, 2(8): 1096-1102. https://doi.org/10.1002/adhm.201200359
  59. Bernards MT, Cheng G, Zhang Z, et al. Nonfouling polymer brushes via surface-initiated, twocomponent atom transfer radical polymerization. Macromolecules, 2008, 41(12): 4216-4219. https://doi.org/10.1021/ma800185y
  60. Cheng G, Xue H, Zhang Z, et al. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angewandte Chemie, 2008, 120(46): 8963-8966. https://doi.org/10.1002/ange.200803570
  61. Yang W, Lin P, Cheng D, et al. Contribution of charges in polyvinyl alcohol networks to marine antifouling. ACS Appl Mater Interfaces, 2017, 9(21): 18295-18304. https://doi.org/10.1021/acsami.7b04079
  62. Yandi W, Mieszkin S, di Fino A, et al. Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling. Biofouling, 2016, 32(6): 609-625. https://doi.org/10.1080/08927014.2016.1170816
  63. Di Fino A, Petrone L, Aldred N, et al. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus). Biofouling, 2014, 30(2): 143-152. https://doi.org/10.1080/08927014.2013.852541
  64. Majumdar P, Lee E, Patel N, et al. Development of environmentally friendly, antifouling coatings based on tethered quaternary ammonium salts in a crosslinked polydimethylsiloxane matrix. Journal of Coatings Technology & Research, 2008, 5(4): 405. https://doi.org/10.1007/s11998-008-9098-4
  65. Yang W, Zhao W, Liu Y, et al. The effect of wetting property on anti-fouling/foul-release performance under quasi-static/hydrodynamic conditions. Progress in Organic Coatings: An International Review Journal, 2016, 95: 64-71. https://doi.org/10.1016/j.porgcoat.2016.02.018
  66. Wan F, Pei X, Yu B, et al. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release. Acs Applied Materials & Interfaces, 2012, 4(9): 4557-4565. https://doi.org/10.1021/am300912w
  67. Du T, Ma S, Pei X, et al. Bio-inspired design and fabrication of micro/nano-brush dual structural surfaces for switchable oil adhesion and antifouling. Small, 2017, 13(4): 1602020. https://doi.org/10.1002/smll.201602020
  68. Sun L, Dai J, Baker GL, et al. High-Capacity, Protein-Binding Membranes Based on Polymer Brushes Grown in Porous Substrates. Chemistry of Materials, 2006, 18(17): 4033-4039. https://doi.org/10.1021/cm060554m
  69. Dai J, Baker GL and Bruening ML. Use of Porous Membranes Modified with Polyelectrolyte Multilayers as Substrates for Protein Arrays with Low Nonspecific Adsorption. Analytical Chemistry, 2006, 78(1): 135-140. https://doi.org/10.1021/ac0513966
  70. Bratek-Skicki A, Cristaudo V, Savocco J, et al. Mixed Polymer Brushes for the Selective Capture and Release of Proteins. Biomacromolecules, 2019, 20(2): 778-789. https://doi.org/10.1021/acs.biomac.8b01353
  71. Jiang L and Ye L. Nanoparticle-supported temperature responsive polymer brushes for affinity separation of histidine-tagged recombinant proteins. Acta biomaterialia, 2019, 94: 447-458. https://doi.org/10.1016/j.actbio.2019.04.056
  72. Trmcic-Cvitas J, Hasan E, Ramstedt M, et al. Biofunctionalized Protein Resistant Oligo(ethylene glycol)-Derived Polymer Brushes as Selective Immobilization and Sensing Platforms. Biomacromolecules, 2009, 10(10): 2885-2894. https://doi.org/10.1016/j.actbio.2019.04.056