Open Access Peer-reviewed Research Article

Resultant gradient information, kinetic energy and molecular virial theorem

Main Article Content

Roman F. Nalewajski corresponding author

Abstract

Resultant gradient-information is introduced and applied to problems in chemical reactivity theory. This local measure of the structural information contained in (complex) wavefunctions of electronic states is related to the system overall kinetic energy combining the modulus (probability) and phase (current) contributions. The grand-ensemble representation of thermodynamic equilibria in open systems demonstrates the physical equivalence of the variational energetic and information principles. It is used and to relate the populational derivatives of ensemble-average functionals in both these representations, which represent reactivity criteria for diagnosing the charge-transfer (CT) phenomena. Their equivalence is demonstrated by using the in situ potential and hardness descriptors to predict the direction and optimum amount of CT. The virial theorem is generalized into thermodynamic quantities and used to extract the kinetic energy component from qualitative energy profiles in the bond-formation and (exo/endo)-ergic reactions. The role of electronic kinetic energy in such chemical processes is reexamined, the virial theorem implications for the Hammond postulate of reactivity theory are explored, and variations of the structural-information in chemical processes are addressed. The maximum thermodynamic information rule is formulated and “production” of the gradient- information in chemical reactions is addressed. The Hammond postulate is shown to be indexed by the geometric derivative of resultant gradient-information at transition-state complex.

Keywords
bond formation, chemical reactivity, grand ensemble, information theory, resultant information, virial theorem

Article Details

How to Cite
Nalewajski, R. (2019). Resultant gradient information, kinetic energy and molecular virial theorem. Chemical Reports, 1(1), 22-35. https://doi.org/10.25082/CR.2019.01.003

References

  1. Nalewajski RF. Quantum information theory of molecular states. Nova Science Publishers, New York, 2016.
  2. Nalewajski RF. Complex entropy and resultant information measures. J Math Chem, 2016, 54: 1777-1782.https://dx.doi.org/10.1007/s10910-016-0651-6
  3. Nalewajski RF. On phase/current components of entropy/information descriptors of molecular states. Mol Phys, 2014, 112: 2587-2601.https://dx.doi.org/10.1080/002689762014897394
  4. Nalewajski RF. Quantum information measures and their use in chemistry. Current Phys Chem, 2017, 7: 94-117https://dx.doi.org/10.2174/1877946806666160622075208
  5. Nalewajski RF. On entropy/information description of reactivity phenomena. In Advances in mathematics research vol 26, Baswell AR Ed). Nova Science Publishers, New York, in press, 2019.
  6. Nalewajski RF. Information description of chemical reactivity. Current Physical Chemistry, in press, 2019.
  7. Nalewajski RF. Role of electronic kinetic energy resultant gradient information) in chemical reactivity. J Mol Model Z. Latajka issue), submitted, 2019
  8. Nalewajski RF. Understanding electronic structure and chemical reactivity. In The Application of Quantum Mechanics in the Reactivity of Molecules, Sousa S Ed). Applied Sciences, submitted, 2019.
  9. Callen HB. Thermodynamics: an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. Wiley, New York, 1962.
  10. Nalewajski RF. Virial theorem implications for the minimum energy reaction paths. Chem Phys, 1980, 50: 127-136.https://dx.doi.org/10.1016/0301-0104808087032-7
  11. Prigogine I. From being to becoming: time and complexity in the physical sciences. Freeman WH & Co, San Francisco, 1980.
  12. Hohenberg P and Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136B: 864-971.https://dx.doi.org/10.1103/PhysRev136B864
  13. Kohn W and Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140A: 133-1138.https://dx.doi.org/10.1103/PhysRev140A1133
  14. Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci USA, 1979, 76: 6062-6065.https://dx.doi.org/10.1073/pnas76126062
  15. Parr RG and Yang W. Density-functional theory of atoms and molecules. Oxford University Press, New York, 1989.
  16. Dreizler RM and Gross EKU. Density functional theory: an approach to the quantum many-body problem. Springer, Berlin, 1990.https://dx.doi.org/10.1007/978-3-642-86105-5
  17. Nalewajski, RF (ed). Density functional theory I-IV, Topics in Current Chemistry, 1996, vols(180-183).https://dx.doi.org/10.1007/3-540-61131-2
  18. Nalewajski RF. Exploring molecular equilibria using quantum information measures. Ann Phys (Leipzig), 2013, 525: 256-268.https://dx.doi.org/10.1002/andp201200230
  19. Nalewajski RF. On phase equilibria in molecules. J Math Chem, 2014, 52: 588-612.https://dx.doi.org/10.1007/s10910-013-0280-2
  20. Nalewajski RF. Quantum information approach to electronic equilibria: molecular fragments and elements of non-equilibrium thermodynamic description. J Math Chem, 2014, 52: 1921-1948.https://dx.doi.org/10.1007/s10910-014-0357-6
  21. Nalewajski RF. Phase/current information descriptors and equilibrium states in molecules. Int J Quantum Chem, 2015, 115: 1274-1288https://dx.doi.org/10.1002/qua24750
  22. Nalewajski RF. Quantum information measures and molecular phase equilibria. In Advances in mathematics research vol 19, Baswell AR Ed). Nova Science Publishers New York, 2015: 53-86.
  23. Nalewajski RF. Phase description of reactive systems. In Conceptual density functional theory, Islam N, Kaya S eds). Apple Academic Press, Waretown, 2018: 217- 249.https://dx.doi.org/10.1201/b22471-8
  24. Nalewajski RF. Entropy continuity, electron diffusion and fragment entanglement in equilibrium states. In Advances in mathematics research vol 22, Baswell AR ed). Nova Science Publishers, New York, 2017: 1-42.
  25. Nalewajski RF. On entangled states of molecular fragments. Trends in Physical Chemistry, 2016, 16: 71-85.
  26. Nalewajski RF. Chemical reactivity description in density-functional and information theories. In Chemical concepts from density functional theory, Liu S ed). Acta Physico-Chimica Sinica, 2017, 33: 2491-2509.
  27. Nalewajski RF. Information equilibria, subsystem entanglement and dynamics of overall entropic descriptors of molecular electronic structure. J Mol Model (Chattaraj PK issue), 2018, 24: 212-227.https://dx.doi.org/10.1007/s00894-018-3699-3
  28. Fisher RA. Theory of statistical estimation. Proc Cambridge Phil Soc, 1925, 22: 700-725.https://dx.doi.org/10.1017/S0305004100009580
  29. Frieden BR. Physics from the Fisher information – a unification. Cambridge University Press, Cambridge, 2004.https://dx.doi.org/10.1017/CBO9780511616907
  30. Shannon CE. The mathematical theory of communication. Bell System Tech J, 1948, 27: 379-493.https://dx.doi.org/10.1002/j1538-73051948tb00917x
  31. Shannon CE, Weaver W. The mathematical theory of communication. University of Illinois, Urbana, 1949.
  32. Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat, 1951, 22: 79-86.https://dx.doi.org/10.1214/aoms/1177729694
  33. Kullback S. Information theory and statistics. Wiley, New York, 1959.
  34. Abramson N. Information theory and coding. McGraw-Hill, New York, 1963.
  35. Pfeifer PE. Concepts of probability theory. Dover, New York, 1978.
  36. Nalewajski RF. Information theory of molecular systems. Elsevier, Amsterdam, 2006.
  37. Nalewajski RF. Information origins of the chemical bond. Nova Science Publishers, New York, 2010.
  38. Nalewajski RF. Perspectives in electronic structure theory. Springer, Heidelberg, 2012.https://dx.doi.org/10.1007/978-3-642-20180-6
  39. Nalewajski RF and Parr RG. Information theory, atoms-in-molecules and molecular similarity. Proc Natl Acad Sci USA, 2000, 97: 8879-8882.https://dx.doi.org/10.1073/pnas97168879
  40. Nalewajski RF. Information principles in the theory of electronic structure. Chem Phys Lett, 2003, 272: 28-34.https://dx.doi.org/10.1016/S0009-26143300335-X
  41. Nalewajski RF. Information principles in the Loge Theory. Chem Phys Lett, 2003, 375: 196-203.https://dx.doi.org/10.1016/S0009-26143300802-9
  42. Nalewajski RF and Broniatowska E. Information distance approach to Hammond Postulate. Chem Phys Lett, 2003, 376: 33-39.https://dx.doi.org/10.1016/S0009-26143300915-1
  43. Nalewajski RF and Parr RG. Information-theoretic thermodynamics of molecules and their Hirshfeld fragments. J Phys Chem A, 2001, 105: 7391-7400.https://dx.doi.org/10.1021/jp004414q
  44. Nalewajski RF. Hirschfeld analysis of molecular densities: subsystem probabilities and charge sensitivities. Phys Chem Chem Phys, 2002, 4: 1710-1721.https://dx.doi.org/10.1039/b107158k
  45. Parr RG, Ayers PW and Nalewajski RF. What is an atom in a molecule? J Phys Chem A, 2005, 109: 3957-3959.
  46. https://dx.doi.org/10.1021/jp0404596
  47. Nalewajski RF and Broniatowska E. Atoms-in-Molecules from the stockholder partition of molecular two-electron distribution. Theoret Chem Acc, 2007, 117: 7-27.https://dx.doi.org/10.1007/s00214-006-0078-4
  48. Heidar-Zadeh F, Ayers PW, Verstraelen T, et al. Information-theoretic approaches to Atoms-in-Molecules: Hirshfeld family of partitioning schemes. J Phys Chem A, 2018, 122: 4219-4245.https://dx.doi.org/10.1021/acsjpca7b08966
  49. Hirshfeld FL. Bonded-atom fragments for describing molecular charge densities. Theoret Chim Acta (Berl), 1977, 44: 129-138.https://dx.doi.org/10.1007/BF00549096
  50. Nalewajski RF. Entropic measures of bond multiplicity from the information theory. J Phys Chem A, 2000, 104: 11940-11951.https://dx.doi.org/10.1021/jp001999f
  51. Nalewajski RF. Entropy descriptors of the chemical bond in Information Theory: I. Basic concepts and relations. Mol Phys 102:531-546; II. Application to simple orbital models. Mol Phys, 2004, 102: 547-566.https://dx.doi.org/10.1080/00268970410001675581
  52. Nalewajski RF. Entropic and difference bond multiplicities from the two-electron probabilities in orbital resolution. Chem Phys Lett, 2004, 386: 265-271.https://dx.doi.org/10.1016/jcplett2004164
  53. Nalewajski RF. Reduced communication channels of molecular fragments and their entropy/information bond indices, Theoret Chem Acc, 2005, 114: 4-18.https://dx.doi.org/10.1007/s00214-005-0638-z
  54. Nalewajski RF. Partial communication channels of molecular fragments and their entropy/information indices. Mol Phys, 2005, 103: 451-470.https://dx.doi.org/10.1080/00268970512331316030
  55. Nalewajski RF. Entropy/information descriptors of the chemical bond revisited. J Math Chem, 2011, 49: 2308-2329.https://dx.doi.org/10.1007/s10910-011-9888-2
  56. Nalewajski RF. Quantum information descriptors and communications in molecules. J Math Chem, 2014, 52: 1292-1323.https://dx.doi.org/10.1007/s10910-014-0311-7
  57. Nalewajski RF. Multiple, localized and delocalized/conjugated bonds in the orbital-communication theory of molecular systems. Adv Quant Chem, 2009, 56: 217-250.https://dx.doi.org/10.1016/S0065-32768800405-X
  58. Nalewajski RF, Szczepanik D and Mrozek J. Bond differentiation and orbital decoupling in the orbital communication theory of the chemical bond. Adv Quant Chem, 2011, 61: 1-48.https://dx.doi.org/10.1016/B978-0-12-386013-200001-2
  59. Nalewajski RF, Szczepanik D and Mrozek J. Basis set dependence of molecular information channels and their entropic bond descriptors. J Math Chem, 2012, 50: 1437-1457.https://dx.doi.org/10.1007/s10910-012-9982-0
  60. Nalewajski RF. Electron communications and chemical bonds. In Frontiers of quantum chemistry, Wójcik M, Nakatsuji H, Kirtman B, Ozaki Y eds). Springer, Singapore, 2017: 315-351.
  61. Nalewajski RF, Świtka E and Michalak A. Information distance analysis of molecular electron densities. Int J Quantum Chem, 2002, 87: 198-213.https://dx.doi.org/10.1002/qua10100
  62. Nalewajski RF and Broniatowska E. Entropy displacement analysis of electron distributions in molecules and their Hirshfeld atoms. J Phys Chem A, 2003, 107: 6270-6280.https://dx.doi.org/10.1021/jp030208h
  63. Nalewajski RF. Use of Fisher information in quantum chemistry. Int J Quantum Chem (Jankowski K issue), 2008, 108: 2230-2252.https://dx.doi.org/10.1002/qua21752
  64. Nalewajski RF, Köster AM and Escalante S. Electron localization function as information measure. J Phys Chem A, 2005, 109: 10038-10043.https://dx.doi.org/10.1021/jp053184i
  65. Becke AD and Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys, 1990, 92: 5397-5403.https://dx.doi.org/10.1063/1458517
  66. Silvi B and Savin A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 1994, 371:683-686.https://dx.doi.org/10.1038/371683a0
  67. Savin A, Nesper R, Wengert S, et al. ELF: the electron localization function. Angew Chem Int Ed Engl, 1997, 36: 1808-1832.https://dx.doi.org/10.1002/anie199718081
  68. Nalewajski RF, de Silva P and Mrozek J. Use of nonadditive Fisher information in probing the chemical bonds. J Mol Struct: THEOCHEM, 2010, 954: 57-74.https://dx.doi.org/10.1016/jtheochem2010128
  69. Nalewajski RF. Through-space and through-bridge components of chemical bonds. J Math Chem, 2011, 49: 371-392.https://dx.doi.org/10.1007/s10910-010-9747-6
  70. Nalewajski RF. Chemical bonds from through-bridge orbital communications in prototype molecular systems. J Math Chem, 2011, 49: 546-561https://dx.doi.org/10.1007/s10910-010-9761-8
  71. Nalewajski RF. On interference of orbital communications in molecular systems. J Math Chem, 2011, 49: 806-815.https://dx.doi.org/10.1007/s10910-010-9777-0
  72. Nalewajski RF and Gurdek P. On the implicit bond-dependency origins of bridge interactions. J Math Chem, 2011, 49: 1226-1237.https://dx.doi.org/10.1007/s10910-011-9815-6
  73. Nalewajski RF. Direct through-space) and indirect through-bridge) components of molecular bond multiplicities. Int J Quantum Chem, 2012, 112: 2355-2370.https://dx.doi.org/10.1002/qua23217
  74. Nalewajski RF and Gurdek P. Bond-order and entropic probes of the chemical bonds. Struct Chem, 2012, 23: 1383-1398.https://dx.doi.org/10.1007/s11224-012-0060-9
  75. Nalewajski RF, Korchowiec J and Michalak A. Reactivity criteria in charge sensitivity analysis. Topics in Current Chemistry: Density functional theory IV, Nalewajski RF (ed), 1996, 183: 25-141.https://dx.doi.org/10.1007/3-540-61131-2_2
  76. Nalewajski RF and Korchowiec J. Charge sensitivity approach to electronic structure and chemical reactivity. World Scientific, Singapore, 1997.https://dx.doi.org/10.1142/2735
  77. Geerlings P, De Proft F and Langenaeker W. Conceptual density functional theory. Chem Rev, 2003, 103: 1793-1873.https://dx.doi.org/10.1021/cr990029p
  78. Nalewajski RF. Sensitivity analysis of charge transfer systems: in situ quantities, intersecting state model and its implications. Int J Quantum Chem, 1994, 49: 675-703.https://dx.doi.org/10.1002/qua560490512
  79. Nalewajski RF. Charge sensitivity analysis as diagnostic tool for predicting trends in chemical reactivity. In Proceedings of the NATO ASI on Density Functional Theory Il Ciocco, 1993), Dreizler RM, Gross EKU eds). Plenum, New York, 1995: 339-389.https://dx.doi.org/10.1007/978-1-4757-9975-0_15
  80. Chattaraj PK (ed). Chemical reactivity theory: a density functional view. CRC Press, Boca Raton, 2009.https://dx.doi.org/10.1201/9781420065442
  81. Gatti C and Macchi P. Modern charge-density analysis. Springer, Berlin, 2012.https://dx.doi.org/10.1007/978-90-481-3836-4
  82. Hammond GS. A correlation of reaction rates. J Am Chem Soc, 1955, 77: 334-338.https://dx.doi.org/10.1021/ja01607a027
  83. von Weizsäcker CF. Zur theorie der kernmassen. Z Phys, 1935, 96: 431-458.https://dx.doi.org/10.1007/BF01337700
  84. Nalewajski RF. Density matrix in determining electron communications and resultant information content in molecular states. In Understanding Density Matrices. Nova Science Publishers, New York, submitted, 2019.
  85. Harriman JE. Orthonormal orbitals fort the representation of an arbitrary density. Phys Rev A, 1980, 24: 680-682.https://dx.doi.org/10.1103/PhysRevA24680
  86. Zumbach G and Maschke K. New approach to the calculation of density functionals. Phys Rev A, 1983, 28: 544-554.https://dx.doi.org/10.1103/PhysRevA28544
  87. Gyftopoulos EP and Hatsopoulos GN. Quantum-thermodynamic definition of electronegativity. Proc Natl Acad Sci USA, 1965, 60: 786-793.https://dx.doi.org/10.1073/pnas603786
  88. Perdew JP, Parr RG, Levy M, et al. Density functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett, 1982, 49:1691-1694.https://dx.doi.org/10.1103/PhysRevLett491691
  89. Mulliken RS. A new electronegativity scale: together with data on valence states and on ionization potentials and electron affinities. J Chem Phys, 1934, 2: 782-793.https://dx.doi.org/10.1063/11749394
  90. Iczkowski RP and Margrave JL. Electronegativity. J Am Chem Soc, 1961, 83: 3547-3551.https://dx.doi.org/10.1021/ja01478a001
  91. Parr RG, Donnelly RA, Levy M, et al. Electronegativity: the density functional viewpoint. J Chem Phys, 1978, 69: 4431-4439.https://dx.doi.org/10.1063/1436185
  92. Parr RG and Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc, 1983, 105: 7512-7516.https://dx.doi.org/10.1021/ja00364a005
  93. Parr RG and Yang W. Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc, 1984, 106: 4049-4050.https://dx.doi.org/10.1021/ja00326a036
  94. Von Neumann J. Mathematical foundations of quantum mechanics. Princeton University Press, Princeton, 1955.
  95. Feinberg MJ and Ruedenberg K. Paradoxical role of the kinetic-energy operator in the formation of the covalent bond. J Chem Phys, 1971, 54: 1495-1512.https://dx.doi.org/10.1063/11675044
  96. Feinberg MJ and Ruedenberg K. Heteropolar one-electron bond. J Chem Phys, 1971, 55: 5805-5818.https://dx.doi.org/10.1063/11675751
  97. Marcus RA. Theoretical relations among rate constants, barriers, and Broensted slopes of chemical reactions. J Phys Chem, 1968, 72: 891-899.https://dx.doi.org/10.1021/j100849a019
  98. Agmon N and Levine RD. Energy, entropy and the reaction coordinate: thermodynamic-like relations in chemical kinetics. Chem Phys Lett, 1977, 52: 197-201.https://dx.doi.org/10.1016/0009-2614777780523-X
  99. Agmon N and Levine RD. Empirical triatomic potential energy surfaces defined over orthogonal bond-order coordinates. J Chem Phys, 1979, 71: 3034-3041.https://dx.doi.org/10.1063/1438709
  100. Miller AR. A theoretical relation for the position of the energy barrier between initial and final states of chemical reactions J Am Chem Soc, 1978, 100: 1984-1992.https://dx.doi.org/10.1021/ja00475a002
  101. Ciosłowski J. Quantifying the Hammond Postulate: intramolecular proton transfer in substituted hydrogen catecholate anions. J Am Chem Soc, 1991, 113: 6756-6761.https://dx.doi.org/10.1021/ja00018a006
  102. Nalewajski RF, Formosinho SJ, Varandas AJC, et al. Quantum mechanical valence study of a bond breaking – bond forming process in triatomic systems. Int J Quantum Chem, 1994, 52: 1153-1176.https://dx.doi.org/10.1002/qua560520504
  103. Nalewajski RF and Broniatowska E. Information distance approach to Hammond postulate. Chem Phys Lett, 2003, 376: 33-39.https://dx.doi.org/10.1016/S0009-26143300915-1
  104. Dunning TH Jr. Theoretical studies of the energetics of the abstraction and exchange reactions in H + HX, with X = F-I. J Phys Chem, 1984, 88: 2469-2477.https://dx.doi.org/10.1021/j150656a011